
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The journey towards active-active
replication in PostgreSQL

Jonathan Katz
Principal PM - Tech
AWS

Amit Kapila
Senior Director
Fujitsu

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agenda

• Overview of PostgreSQL replication

• Active-active replication: Use cases and requirements

• Evolution of logical replication to support "active-active"

• Roadmap for PostgreSQL to support active-active

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Overview of
PostgreSQL replication

3

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is replication?

• Copying data between systems

• Physical replication

• Copies data exactly as it appears on disk

• Only works between same major versions of PostgreSQL

• Logical replication

• Copies data in a format that can be interpreted by other systems

• "pgoutput" is the default; can create your own "decoding plugins" (e.g. wal2json)

• Publisher / subscriber model

• Can replicate between heterogeneous systems

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 5

Current replication use-cases for PostgreSQL

• High availability

• Load balancing read queries

• Change data capture (CDC)

• Extract-transform-load (ETL)

• Data warehousing

• Online major version upgrades

• System migrations

• Data residency (to a degree)

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Replication deployment
models

6

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 7

Active-standby deployment model

• One primary (active), one or more replicas (standby)
• Choice of synchronous / quorum commit or asynchronous
• Use-cases

• High availability
• Read load balancing

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 8

Active-standby advantage and tradeoffs
Advantages

• Simple consistency model: one

"source of truth"

• Simple for application

development

Tradeoffs

• "Extra work" in promoting a

standby

• Heartbeat

• Determine "best available" standby

• Write traffic redirection

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 9

Active-active deployment model

• One or more primaries (active) that replicate between each other

• Can also include standbys, but not in "high availability set"

• Use-cases

• High availability

• "Blue / green" deployments (upgrades, application changes)

• System migrations

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 10

Active-active advantage and tradeoffs
Advantages

• "No failover" – redirect write

traffic

Tradeoffs

• Requires conflict detection /

resolution

• Applications need to be

designed for active-active

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 11

What does PostgreSQL need to support active-active?

• PostgreSQL already supports active-active*

• Logically replicate between partitions across different publishers

• Some extensions / 3rd party tools provide "active-active" support

• (Spoiler: PostgreSQL 16 supports bidirectional replication)

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 12

What does PostgreSQL need to better support active-active?

• Features that allow PostgreSQL to support active-active natively:
• Replication of all/most objects
• Replication of all/most commands
• Improvements to conflict detection
• Conflict resolution / conflict statistics
• Node synchronization
• (Two-phase commit (2PC) transaction manager?)

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Evolution of logical replication
to support active-active

13

14

Evolution of logical replication in PostgreSQL

9.4

• Logical decoding
• Replica identity
• Replication slots

2014

10

• Logical Replication

2017

13

• logical_decoding_work_mem
• Replicate partitioned table
• max_slot_wal_keep_size

2020

14

• Streaming of in-progress
transactions
• Decoding of prepared

transactions
• Allow data to be transferred in

binary mode
• Performance improvements

2021

9.5

• Track commit timestamp
• Track replication progress

2016 (Jan)

9.6

• Support generic WAL
messages for logical
decoding

2016 (Sep)

15

2022
• Replication of prepared

transactions
• FOR ALL TABLES IN SCHEMA
• Row filter/Column Lists
• SKIP transaction
• Disable subscription on error

11

• Replicate TRUNCATE
• Reduce memory usage

2018
12

• Allow replication
slots to be copied

2019

1515

Logical replication enhancements
in PostgreSQL 16

16

Allow filtering data based on origin during replication

CREATE SUBSCRIPTION sub1 CONNECTION ... PUBLICATION pub1 WITH (origin = none);

● options: none, any

● Setting origin to none means that the subscription will request the publisher to only send changes that
don't have an origin.

● Setting origin to any means that the publisher sends changes regardless of their origin.

● The default is any.

● This allows to setup n-way logical replication as it can be used to prevent loops when doing bi-directional
replication

Syntax

17

Bi-directional setup

P
CREATE TABLE mytbl(c1 int primary key);
CREATE PUBLICATION mypub FOR TABLE mytbl;

S

P

P

Publisher

Subscriber

CREATE TABLE mytbl(c1 int primary key);
CREATE SUBSCRIPTION mysub CONNECTION 'dbname=postgres' PUBLICATION mypub;
CREATE PUBLICATION mypub FOR TABLE mytbl;

CREATE SUBSCRIPTION mysub CONNECTION 'dbname=postgres port=5444' PUBLICATION mypub;
INSERT INTO t1 values(1);

Publisher

Publisher's
server log

Publisher

ERROR: duplicate key value violates unique constraint "t1_pkey"
DETAIL: Key (c1)=(1) already exists.

ALTER SUBSCRIPTION mysub SET(origin=none);

P

18

● This requires wal_level = logical on both primary and standby.

● Invalidate logical slots on standby

● when the required rows are removed on primary.

● when the wal_level on the primary server is reduced to below logical.

● Check the conflicting field in pg_replication_slots to know if the slot is invalidated due to conflict.

● This feature allows workload distribution by allowing subscribers to subscribe from standby when
primary is busy.

Allow logical decoding from standby

19

Standby node

Logical replication from standby

Walsender
(for node 1)

Subscriber node 1

Apply worker

Send decoded data

DB

Applies changes

Subscriber node n

Apply worker

DB

Applies changes

……

Walsender
(for node n)

Keep reading
and decoding

Send decoded data

……

……

Logical replication

Keep reading

and decoding

Primary node

Walsender

Keep streaming WAL records

Walreceiver

WAL

Writes
WAL data

Startup

Replays WAL data

Invalidate the conflict
logical slot(s) if any

DB

Reads WAL data

Physical replication

20

● Non-superusers must have been granted pg_create_subscription role.

● Non-superusers must additionally have CREATE permissions on the database in which the subscription
is to be created.

● Non-superusers are required to specify a password for authentication.

● Superusers can set password_required=false for non-superusers that own the subscription.

Allow non-superusers to create subscriptions

21

● CREATE SUBSCRIPTION sub1 … WITH (run_as_owner = false);

● The subscription owner needs to be able to SET ROLE to each role that owns a replicated table.

● If the table owner doesn't have permission to SET ROLE to the subscription,
SECURITY_RESTRICTED_OPERATION is imposed.

● If the subscription has been configured with run_as_owner = true, then no user switching will occur.

● This also means that any user who owns a table into which replication is happening can execute
arbitrary code with the privileges of the subscription owner.

Allow apply process to perform operations with the table owner's privileges

22

● Performance improvement in the range of 25-40% has been observed.

● Each large transaction is assigned to one of the available workers. The worker remained assigned till the
transaction completes.

● max_parallel_apply_workers_per_subscription indicates the maximum number of parallel apply
workers per subscription.

Allow large transactions to be applied in parallel

CREATE SUBSCRIPTION sub1
CONNECTION ...
PUBLICATION pub1 WITH (streaming = parallel);

Syntax

https://www.postgresql.org/message-id/CAJpy0uBm0%2ByZs%2B7emKCp2%2BRdvA3Gy_SW0aLfntfHvcEiWq_5Ew%40mail.gmail.com

23

Parallel Apply workers

Publisher node

Backend-1

BEGIN;
INSERT …;

-- keep writing
……

COMMIT;

Walsender

Backend-2

BEGIN;
UPDATE …;

-- keep writing
……

COMMIT;

Subscriber node

Apply worker

DB

Apply worker sends
messages to
parallel apply worker

STREAM COMMIT;

Parallel Apply worker

Apply worker starts
parallel apply worker

Data is applied immediately

Parallel Apply worker

Multiple parallel apply worker
can run in parallel

STREAM COMMIT;

When memory limit is exceeded,
decoded data is sent to subscriber

Another in-progress transaction can
be streamed in parallel

24

● Prior to this feature, using REPLICA IDENTITY FULL on the publisher can lead to a full table scan per
tuple change on the subscriber when REPLICA IDENTITY or PK index is not available.

● The index that can be used must be a btree index, not a partial index, and it must have at least one
column reference.

● The performance improvement is proportional to the amount of data in the table.

Allow the use of indexes other than PK and REPLICA IDENTITY on subscriber

25

● Prior to V16, this option only allows replication to replicate tables in binary format.

● Copying tables in binary format may reduce the time spent depending on column types.

● A binary copy is supported only when both publisher and subscriber are v16 or later.

Allow logical replication to copy tables in binary format

CREATE SUBSCRIPTION sub1
CONNECTION ...
PUBLICATION pub1 WITH (binary = true);

Syntax

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Roadmap to support
active-active deployments

26

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 28

Logical replication in PostgreSQL 17 and beyond

• DDL replication

• Deparse the command to pass it in a standard format like JSON

• Replication of DDL commands

• Initial sync

• Replication of sequences

• Synchronization of replication slots to allow failover

• Upgrade of logical replication nodes

• Reuse of tablesync workers

• Time-delayed replication

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 29

Features to support active-active deployments

• Logical replication of commands
• Logical replication of sequences

• Global sequences
• Conflicts

• Detection
• Last commits wins resolution
• Monitoring

• Node initialization, synchronization, resynchronization, pause /
resume

• Performance
• Decoding
• Apply process
• Lag catch up

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

