

Implementing System Versioned
Temporal Table

Surafel Temesgen Mamo
Pgcon 2020

About me

● Surafel Temesgen
● I am a dba
● I contribute to PostgreSQL
● @surafelTem

Agenda

● Definition
● Use Case
● Implementation Options
● Temporal Query

Temporal Table(1)

● System versioned temporal table is SQL
standard.

● It is about retaining of past record alone with
current record automatically by database
management system and ability of queering
both current and history record

Temporal Table(2)

● There are also an application time period which
are for meeting the requirements of
applications. It is based on application specific
time periods which is valid in the business world

● A table can also be both a system versioned
and an application time period table

Usage

● Recovery
● Auditing
● Can be used in place of application time period

in same use case
● Trend analysis

Implementation Options

● System versioned temporal table can be
implemented in two ways depends on the
location of old record

● There are a wiki page describing the design for
implement it using two tables

● But I go with one table approach

Two Tables Approach

● Involves two tables
● One is current table for current data storage
● The other is history table for historical data

storage
● Old row inserts to history table using trigger
● Temporal queries satisfy by the union of the two

tables
● Multiple technical columns have to be created

implicitly

One Table Approach

● Both current and history record stores in one
table

● Uses row end time column for record
classification

● System versioning columns treat like a kind of
generated column

● History data filter clause adds to non-temporal
query

 Can be specifies like
CREATE TABLE t (a integer PRIMARY KEY, start_timestamptz timestamp with time
zone GENERATED ALWAYS AS ROW START, end_timestamptz timestamp with time
zone GENERATED ALWAYS AS ROW END, PERIOD FOR SYSTEM_TIME
(start_timestamptz, end_timestamptz)) WITH SYSTEM VERSIONING;

 or

CREATE TABLE t (a integer PRIMARY KEY) WITH SYSTEM VERSIONING;

CREATE TABLE(1)

● Both current and history data stores in one
table

● Row end time column adds to primary and
unique key constraint to avoid conflict between
current and history data

● Table partitioning can be used to minimize
performance impact to non temporal query

CREATE TABLE(2)

INSERT

● System versioning columns values set
automatically

● Row start time column fills with current
transaction time and row end time column fills
with infinity

UPDATE

● For non-system versioned table, update
operation performed by marking a tuple to be
updated to delete, and then insert the update
tuple into the table

● In system versioning, to be deleted tuple will be
inserts with row end time column sets to current
transaction time

● For updated tuple row start and end time
columns set to current transaction time and
infinity respectively

DELETE

● Delete became logical
● Row end time column sets to current

transaction time and inserts

SELECT

● System version table have to be upward
compatible

● Filter condition adds to non-temporal query to
filter out history record

Advantages Of One Table Approach

● Alter table is simple
● No need of primary key or technical columns
● No union operation
● It have optimization opportunity
● It can benefits from partition pruning

AS OF <tp>

● Its used to see the current records in specified
point in time

● All the records that have row start time column
value less than specified point in time and row
end time column value greater or equal to
specified point in time will be returned

e.g SELECT * FROM t FOR system_time AS OF 'ts' ORDER BY start_timestamp, a;

FROM <tp1> TO <tp2>

● Its return all the records that were current at
any point between tp1 and tp2, including tp1,
but excluding tp2
e.g SELECT * FROM t FOR system_time FROM 'ts1' TO 'ts2' ORDER BY start_timestamp, a;

BETWEEN <tp1> AND <tp2>

● It returns all the records that were current at
any point between tp1 and tp2, row visible
exactly at tp1 or exactly at tp2 will be returned .
e.g SELECT * FROM t FOR system_time BETWEEN ASYMMETRIC
'ts1' AND 'ts2' ORDER BY start_timestamp, a;

BETWEEN ASYMMETRIC
<tp1>AND<tp2>

● It is the same as BETWEEN <tp1> and <tp2>
e,g SELECT * FROM t FOR system_time BETWEEN ASYMMETRIC 'ts1' AND 'ts2'
ORDER BY start_timestamp, a;

BETWEEN SYMMETRIC
<tp1>AND<tp2>

● Returns all the records that were current at any
point between the least and greatest time point
between tp1 and tp2

● Row current exactly at least time point or
exactly at greater time point will be returned
e.g SELECT a FROM t FOR system_time BETWEEN SYMMETRIC
'ts1' AND 'ts2' ORDER BY start_timestamp, a;

Add System Versioning(1)

ALTER TABLE t ADD SYSTEM VERSIONING;
● Adds system versioning to table
● Uses default system versioning columns
● If the table is not empty the records will be set

to current data

Add System Versioning(2)

● System versioning can also enabled by issuing
ADD COLUMN statement to system versioning
columns in one command
e.g ALTER TABLE t ADD COLUMN start timestamptz GENERATED ALWAYS AS
ROW START, ADD COLUMN end timestamptz GENERATED ALWAYS AS ROW
END;

Remove System Versioning(1)

ALTER TABLE t DROP SYSTEM
VERSIONING;

● It removes system versioning from the table
● System versioning columns will be dropped too
● If the table contain history record, it removed

together as per the standard

Remove System Versioning(2)

● System versioning can also be disabled by
issuing DROP column statement to system time
columns in one command
e.g ALTER TABLE t DROP COLUMN start , DROP COLUMN end;

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

