
@LukasFittl

What’s Missing For
Postgres Monitoring

@LukasFittl

What are the problems
with Postgres monitoring?

It’s incomplete.
It’s hard to access & understand.
It contains sensitive information.

It’s incomplete.
It’s hard to access & understand.
It contains sensitive information.

Query
Planning

Active
Queries

Connection
Handling

Connection
Security

Heavyweight
Locks

Table/Index
Access

Parallel
Query

Connections

Maintenance

CPU, I/O
& Memory

Query planning

Query execution Query
Failures

Historic
Queries

WAL
Writing

Utility
Commands Autovacuum Backups

Shared resources

Query
Planning

Active
Queries

Connection
Handling

Connection
Security

Heavyweight
Locks

Table/Index
Access

Parallel
Query

Connections

Maintenance

CPU, I/O
& Memory

Query planning

Query execution Query
Failures

Historic
Queries

WAL
Writing

Utility
Commands Autovacuum Backups

Shared resources

Connection Handling

pg_stat_activity

Log events
Connection received

Disconnection

Incomplete startup packet (client failed to connect)

Could not receive data from client / connection to client lost

EOF on client connection with an open transaction

Terminating connection due to administrator command

Remaining connection slots are reserved for superuser (out of connections)

Too many connections for role

Could not accept SSL connection

Unsupported frontend protocol

Incomplete message from client

Too many connections for database

Client-side connection latency

What’s Missing

Application Query Planninglibpq Query Execution

Planning Time Execution Time

Connection 
Roundtrip 

Time

Hard to track from the Postgres server side
- could libpq have built-in measurements here?

- should \timing in psql give connection time and planning/execution time separately?

Connection Security

pg_stat_ssl

pg_stat_gssapi

Log events
Connection authorized

Authentication failed / pg_hba.conf rejects connection

Aggregation of security-relevant
Postgres events
Which IPs logged in as superuser?

How many login failures occurred recently?

Which of my pg_hba lines are matching?

What’s Missing

Query
Planning

Active
Queries

Connection
Handling

Connection
Security

Heavyweight
Locks

Table/Index
Access

Parallel
Query

Connections

Maintenance

CPU, I/O
& Memory

Query planning

Query execution Query
Failures

Historic
Queries

WAL
Writing

Utility
Commands Autovacuum Backups

Shared resources

Query Planning

EXPLAIN

EXPLAIN: Buffers for Planning

pg_stat_statements planning time

Log events
auto_explain

New

New

EXPLAIN: Buffers for Planning

New in Postgres 13

 QUERY PLAN

 Limit (cost=0.00..0.03 rows=1 width=86) (actual time=0.446..0.446 rows=1 loops=1)

 Buffers: shared read=1

 -> Append (cost=0.00..103559.88 rows=3406392 width=86) (actual time=0.445..0.446 rows=1 loops=1)

 Buffers: shared read=1

 -> Seq Scan on query_stats_hourlies_60d_20200127 query_stats_hourlies_60d_1 (cost=0.00..527.90 rows=20790 width=86) (actual time=0.440..0.440 rows=1 loops=1)

 Buffers: shared read=1

 -> Seq Scan on query_stats_hourlies_60d_20200128 query_stats_hourlies_60d_2 (cost=0.00..723.93 rows=28493 width=86) (never executed)

 ...

 Planning Time: 45.882 ms

 Buffers: shared hit=8306 read=435 dirtied=10

 Execution Time: 0.446 ms

(128 rows)

pg_stat_statements:
Planning Time

New in Postgres 13

=# SELECT queryid, substring(query for 40), mean_exec_time, mean_plan_time, max_plan_time FROM pg_stat_statements ORDER BY mean_plan_time DESC
LIMIT 5;
 queryid | substring | mean_exec_time | mean_plan_time | max_plan_time
----------------------+--+--------------------+-------------------+---------------
 586048399314747810 | WITH upsert(backend_id, server_id, ident | 0.440361 | 5.890649 | 5.890649
 5426874022189006220 | WITH data(table_id, name, first_snapshot | 18.846979 | 5.452164 | 5.452164
 3576712877697568576 | WITH data(table_id, name, first_snapshot | 17.85431479746835 | 5.032493797468352 | 12.714722
 -1758450264182311255 | WITH data(table_id, name, first_snapshot | 17.870344956521738 | 4.544071499999999 | 6.236185
 -1076182304104233502 | WITH data(table_id, name, first_snapshot | 15.446047395348836 | 3.378207406976743 | 5.378551
(5 rows)

Aggregate Plan Statistics

What’s Missing

Many experimental Postgres extensions

(pg_stat_plans, pg_store_plans, pg_stat_sql_plans, etc)

Not production ready, or merge-able into Postgres core

Query
Planning

Active
Queries

Connection
Handling

Connection
Security

Heavyweight
Locks

Table/Index
Access

Parallel
Query

Connections

Maintenance

CPU, I/O
& Memory

Query planning

Query execution Query
Failures

Historic
Queries

WAL
Writing

Utility
Commands Autovacuum Backups

Shared resources

Active Queries

pg_stat_activity

(state, query_start, xact_start, wait events)

Additional & renamed
wait events

New in Postgres 13

 Report wait event for cost-based vacuum delay.

 Add description about LogicalRewriteTruncate wait event into document.

 Add description about GSSOpenServer wait event into document.

 Correct the descriptions of recovery-related wait events in docs.

 Rename the recovery-related wait events.

 Add wait events for WAL archive and recovery pause.

 Add wait events for recovery conflicts.

 Report missing wait event for timeline history file.

 Report time spent in posix_fallocate() as a wait event.

 Drop the redundant "Lock" suffix from LWLock wait event names.

 Mop-up for wait event naming issues.

Breakdown of non-waiting 
active state

What’s Missing

postgres=# SELECT state, wait_event_type, wait_event, substring(query for 100) FROM pg_stat_activity WHERE backend_type = 'client backend';

 state | wait_event_type | wait_event | substring

--------+-----------------+------------+--

 active | | | COPY public.log_lines_30d_20200516 (log_line_id, server_id, backend_pid, occurred_at, log_file_id, l

 active | | | COPY public.log_lines_30d_20200514 (log_line_id, server_id, backend_pid, occurred_at, log_file_id, l

 active | | | COPY public.log_lines_30d_20200517 (log_line_id, server_id, backend_pid, occurred_at, log_file_id, l

 active | | | COPY public.log_lines_30d_20200515 (log_line_id, server_id, backend_pid, occurred_at, log_file_id, l

 active | | | SELECT state, wait_event_type, wait_event, substring(query for 100) FROM pg_stat_activity WHERE back

 idle | Client | ClientRead |

(6 rows)

Samples: 379K of event 'cpu-clock:pppH', 4000 Hz, Event count (approx.): 55672843733 lost: 0/0 drop: 15165/199698

 Children Self Shared Object Symbol

+ 58.01% 0.91% postgres [.] CopyFrom

+ 46.72% 1.54% postgres [.] NextCopyFrom

+ 23.68% 0.98% postgres [.] InputFunctionCall

+ 20.72% 5.71% postgres [.] NextCopyFromRawFields

+ 15.13% 0.03% perf [.] __ordered_events__flush.part.0

+ 15.08% 0.03% perf [.] deliver_event

+ 14.73% 0.02% perf [.] hist_entry_iter__add

+ 11.81% 0.82% perf [.] iter_add_next_cumulative_entry

+ 11.60% 0.45% postgres [.] timestamp_in

+ 8.77% 0.99% postgres [.] DecodeDateTime

+ 8.36% 0.22% [kernel] [k] do_syscall_64

+ 7.29% 0.27% [kernel] [k] __softirqentry_text_start

+ 6.97% 0.01% [kernel] [k] net_rx_action

+ 6.54% 0.01% [kernel] [k] ena_io_poll

+ 6.13% 0.00% libc-2.31.so [.] __libc_start_main

perf top -g

Samples: 379K of event 'cpu-clock:pppH', 4000 Hz, Event count (approx.): 55672843733 lost: 0/0 drop: 15165/199698

 Children Self Shared Object Symbol

- 58.01% 0.91% postgres [.] CopyFrom

 - 7.70% CopyFrom

 - 11.96% NextCopyFrom

 + 15.40% NextCopyFromRawFields

 - 11.65% InputFunctionCall

 4.84% uuid_in

 + 4.26% timestamp_in

 + 1.70% heap_multi_insert

 + 0.91% __libc_start_main

+ 46.72% 1.54% postgres [.] NextCopyFrom

+ 23.68% 0.98% postgres [.] InputFunctionCall

+ 20.72% 5.71% postgres [.] NextCopyFromRawFields

+ 15.13% 0.03% perf [.] __ordered_events__flush.part.0

+ 15.08% 0.03% perf [.] deliver_event

+ 14.73% 0.02% perf [.] hist_entry_iter__add

+ 11.81% 0.82% perf [.] iter_add_next_cumulative_entry

+ 11.60% 0.45% postgres [.] timestamp_in

perf top -g

Query Progress Monitoring

What’s Missing

Historic Queries

pg_stat_statements

Log Events
Slow query (log_min_duration_statement)

Statement notice (log_statement)

auto_explain

Better handling of IN(…) lists
& other ORM patterns

What’s Missing

Linking pg_stat_statements
with other views & logs

What’s Missing

Finding queries based on
application requests/customers

What’s Missing

pg_stat_statements has no way of differentiating
queries beyond the queried

Web Request
SQL Statement

SQL Statement

EXPLAIN Plan
Customer

Which customers were affected by a slow query?

What was the EXPLAIN plan for a SQL query involved
in a particular slow web request?

Solution for per-customer analysis:

“citus_stat_statements” in Citus extension
SELECT partition_key as tenant_id,
 count(*) as tenant_unique_queries,
 sum(calls) as tenant_total_queries,
 sum(total_time) as total_query_time
FROM citus_stat_statements
WHERE partition_key is not null
GROUP BY tenant_id
ORDER BY tenant_total_queries DESC
LIMIT 5;

 tenant_id | tenant_unique_queries | tenant_total_queries | total_query_time
-----------+-----------------------+----------------------+------------------
 12 | 148 | 159295 | 753142.54
 2 | 2045 | 23846 | 12957.83
 1 | 74 | 9572 | 8492.05
 634 | 175 | 12753 | 6876.11
 361 | 375 | 3653 | 6422.93
(5 rows)

Solution for finding particular web requests:

Application adds comments to locate specific
queries + auto_explain/log_min_duration_statement

/*  
application:pganalyze,  
controller:graphql,  
action:graphql,  
line:/app/services/dataload.rb:39:in `select_rows',  
graphql:getQueryDetailStats,  
request_id:55a6fa2d-9ffe-4374-a535-f5d1ee64ba84  
*/

Built-in Wait Event Aggregation
What’s Missing

pg_wait_sampling

Parallel Query

pg_stat_activity

(backend_type = parallel worker)

pg_stat_activity

(leader_pid)

EXPLAIN improvements

New

New

pg_stat_activity: 
leader_pid for Parallel Query

New in Postgres 13

SELECT backend_type, leader_pid, state, wait_event, wait_event_type, query FROM pg_stat_activity WHERE state <> 'idle';
 backend_type | leader_pid | state | wait_event | wait_event_type | query
-----------------+------------+--------+--------------+-----------------+---
 client backend | 36936 | active | DataFileRead | IO | SELECT * FROM log_lines_30d ORDER BY occurred_at DESC LIMIT 10;
 parallel worker | 36936 | active | DataFileRead | IO | SELECT * FROM log_lines_30d ORDER BY occurred_at DESC LIMIT 10;
 parallel worker | 36936 | active | DataFileRead | IO | SELECT * FROM log_lines_30d ORDER BY occurred_at DESC LIMIT 10;
(3 rows)

EXPLAIN improvements for
parallel workers

New in Postgres 13

 QUERY PLAN

--

 Limit (cost=2333874.04..2333876.38 rows=20 width=206) (actual time=29049.924..29049.934 rows=20 loops=1)

 -> Gather Merge (cost=2333874.04..7549291.60 rows=44700458 width=206) (actual time=29046.525..29217.937 rows=20 loops=1)

 Workers Planned: 2

 Workers Launched: 2

 -> Sort (cost=2332874.02..2388749.59 rows=22350229 width=206) (actual time=28998.140..28998.143 rows=20 loops=3)

 Sort Key: log_lines_30d.occurred_at DESC

 Sort Method: top-N heapsort Memory: 34kB

 Worker 0: Sort Method: top-N heapsort Memory: 35kB

 Worker 1: Sort Method: top-N heapsort Memory: 35kB

 …

+ JIT Information
+ JSON format fixes

Aggregate information about
Effectiveness of Parallel Query

What’s Missing

Are my queries using parallel query?

Are there sufficient workers for parallel query?

Query Failures

Log Events
Canceling statement due to statement timeout

Canceling statement due to user request

CONTEXT for failure of parameterized queriesNew

CONTEXT for failure
of parameterized queries

New in Postgres 13

SET log_parameter_max_length_on_error = 1024

ERROR: division by zero
STATEMENT: SELECT 1/$1

ERROR: division by zero
CONTEXT: extended query with parameters: $1 = '0'
STATEMENT: SELECT 1/$1

Query
Planning

Active
Queries

Connection
Handling

Connection
Security

Heavyweight
Locks

Table/Index
Access

Parallel
Query

Connections

Maintenance

CPU, I/O
& Memory

Query planning

Query execution Query
Failures

Historic
Queries

WAL
Writing

Utility
Commands Autovacuum Backups

Shared resources

Heavyweight Locks

pg_locks

Log Events
Process acquired lock on tuple / relation / object

Process still waiting for lock on tuple / relation / object

Canceling statement due to lock timeout

Deadlock detected (transaction rolled back)

Process avoided deadlock by rearranging queue order

Aggregate Lock Statistics
Difficult to use pg_locks for

historic data

(e.g. pg_stat_statements lock_wait_time column)

What’s Missing

Table/Index access

pg_stat_all_tables

pg_statio_all_tables

pg_stat_all_indexes

pg_statio_all_indexes		

Per-statement
index scan/seq scan counters
pg_stat_statements should have idx_scan and seq_scan counters

What’s Missing

CPU, I/O and Memory

System metrics

pg_statio_*.

pg_shmem_allocationsNew

Connection memory usage
statistics

What’s Missing

pg_shmem_allocations

New in Postgres 13

=# SELECT * FROM pg_shmem_allocations ORDER BY allocated_size DESC;
 name | off | size | allocated_size
-------------------------------------+------------+------------+----------------
 Buffer Blocks | 86739584 | 8589934592 | 8589934592
 <anonymous> | | 91191424 | 91191424
 Buffer Descriptors | 19630720 | 67108864 | 67108864
 Buffer IO Locks | 8676674176 | 33554432 | 33554432
 Checkpointer Data | 8808573696 | 25165888 | 25165952
 Checkpoint BufferIds | 8710228608 | 20971520 | 20971520
 XLOG Ctl | 104832 | 16803472 | 16803584
 | 8849116416 | 8033024 | 8033024
 Xact | 16908800 | 2116320 | 2116352
 Backend Activity Buffer | 8807698304 | 541696 | 541696
 Subtrans | 19158912 | 267008 | 267008
 Backend Status Array | 8807406080 | 224296 | 224384

<= shared_buffers

WAL Writing

pg_current_wal_lsn

Per-statement WAL statistics

autovacuum WAL statistics

EXPLAIN WAL statistics

New

New

New

Per-statement WAL statistics

New in Postgres 13

=# SELECT substring(query for 70), wal_records, wal_fpi, wal_bytes FROM pg_stat_statements ORDER BY wal_records DESC;
 substring | wal_records | wal_fpi | wal_bytes
--+-------------+---------+-------------
 COPY public.log_lines_30d_20200525 (log_line_id, server_id, log_line_p | 13637990 | 1690272 | 11920182549
 CREATE TEMPORARY TABLE upsert_data (server_id uuid NOT NULL, backend_i | 8568987 | 5429 | 881673525
 COPY activity.query_origins_7d_20200525 (backend_query_id, database_id | 7507811 | 789923 | 5796656931
 COPY activity.backend_snapshots_1d_20200525 (collected_at, state, wait | 6909068 | 802625 | 5241077274
 CREATE TEMPORARY TABLE upsert_data (server_id uuid NOT NULL, identity | 6541995 | 11087 | 705700102
 CREATE TEMPORARY TABLE upsert_data (server_id uuid NOT NULL, identity | 6418566 | 31123 | 771654086
 COPY public.log_line_stats_30d_20200525 (log_line_id, server_id, occur | 5338310 | 722396 | 4800621926
 DROP TABLE upsert_data | 5056385 | 13 | 269723603
 COPY public.log_lines_30d_20200524 (log_line_id, server_id, log_line_p | 3162220 | 496058 | 3261770520
 DROP TABLE upsert_data | 2134608 | 6 | 113901008
…

autovacuum WAL statistics

New in Postgres 13

LOG: automatic vacuum of table “…”: index scans: 1
pages: 0 removed, 75444 remain, 3 skipped due to pins, 0 skipped frozen
tuples: 996760 removed, 4210912 remain, 0 are dead but not yet removable, oldest xmin: 1871789
buffer usage: 114171 hits, 1 misses, 21614 dirtied
avg read rate: 0.001 MB/s, avg write rate: 20.434 MB/s
system usage: CPU: user: 2.42 s, system: 0.03 s, elapsed: 8.26 s
WAL usage: 94064 records, 17930 full page images, 34394711 bytes

EXPLAIN WAL statistics

New in Postgres 13

=# BEGIN;
BEGIN
=*# EXPLAIN (ANALYZE, WAL) UPDATE backend_counts SET state = state WHERE backend_count_id IN (SELECT backend_count_id FROM backend_counts LIMIT 100);
 QUERY PLAN
--
 Update on backend_counts (cost=4.47..850.04 rows=100 width=139) (actual time=1.049..1.049 rows=0 loops=1)
 WAL: records=168 fpi=5 bytes=39013
 -> Nested Loop (cost=4.47..850.04 rows=100 width=139) (actual time=0.239..0.734 rows=100 loops=1)
 WAL: records=2 bytes=416
 -> HashAggregate (cost=4.04..5.04 rows=100 width=56) (actual time=0.229..0.246 rows=100 loops=1)
 Group Key: "ANY_subquery".backend_count_id
 Peak Memory Usage: 45 kB
 -> Subquery Scan on "ANY_subquery" (cost=0.00..3.79 rows=100 width=56) (actual time=0.014..0.202 rows=100 loops=1)
 -> Limit (cost=0.00..2.79 rows=100 width=16) (actual time=0.011..0.184 rows=100 loops=1)
 -> Seq Scan on backend_counts backend_counts_1 (cost=0.00..119801.53 rows=4291453 width=16) (actual time=0.010..0.177 rows=100
 -> Index Scan using backend_counts_pkey on backend_counts (cost=0.43..8.45 rows=1 width=99) (actual time=0.005..0.005 rows=1 loops=100)
 Index Cond: (backend_count_id = "ANY_subquery".backend_count_id)
 WAL: records=2 bytes=416

Query
Planning

Active
Queries

Connection
Handling

Connection
Security

Heavyweight
Locks

Table/Index
Access

Parallel
Query

Connections

Maintenance

CPU, I/O
& Memory

Query planning

Query execution Query
Failures

Historic
Queries

WAL
Writing

Utility
Commands Autovacuum Backups

Shared resources

Utility Commands

pg_stat_progress_vacuum

pg_stat_progress_analyze

pg_stat_progress_cluster

pg_stat_progress_create_index

New

pg_stat_progress_analyze

New in Postgres 13

=# SELECT * FROM pg_stat_progress_analyze ;
 pid | datid | datname | relic | phase | sample_blks_total | sample_blks_scanned | ext_stats_total
-------+-------+-------------------+--------+-----------------------+-------------------+---------------------+---------------
 36936 | 16400 | pganalyze_staging | 115537 | acquiring sample rows | 30000 | 26756 | 0
(1 row)

autovacuum

pg_stat_progress_vacuum

Log Events
Canceling autovacuum task

Database must be vacuumed within N transactions (TXID Wraparound Warning)

Database is not accepting commands to avoid wraparound data loss

Autovacuum launcher started

Autovacuum launcher shutting down

Automatic vacuum of table completed

Skipping vacuum - lock not available

Aggregate autovacuum stats
(only available in logs)
How often a table is being vacuumed
Avg runtime of a vacuum
Tuples that couldn’t be removed

What’s Missing

Backups

pg_stat_progress_basebackupNew

pg_stat_progress_basebackup

New in Postgres 13

=# SELECT * FROM pg_stat_progress_basebackup ;
 pid | phase | backup_total | backup_streamed | tablespaces_total | tablespaces_streamed
-------+----------------------------------+--------------+-----------------+-------------------+----------------------
 35397 | waiting for checkpoint to finish | 0 | 0 | 0 | 0
(1 row)

=# SELECT *, backup_streamed / backup_total::float * 100 AS pct_done FROM pg_stat_progress_basebackup ;
 pid | phase | backup_total | backup_streamed | tablespaces_total | tablespaces_streamed | pct_done
-------+--------------------------+--------------+-----------------+-------------------+----------------------+-------------------
 35397 | streaming database files | 63006018048 | 52671390720 | 1 | 0 | 83.59739648976586
(1 row)

What’s Missing

1. Client-side connection latency
2. Aggregation of security-relevant Postgres events
3. Aggregate Plan Statistics
4. Breakdown of non-waiting active state
5. Query Progress Monitoring
6. pgss: Better handling of IN(…) lists & other ORM patterns
7. Linking pg_stat_statements with other views & logs
8. Finding queries based on application requests/customers
9. Built-in Wait Event Aggregation
10. Aggregate information about effectiveness of Parallel Query
11. Aggregate Lock Statistics
12. Per-statement index scan/seq scan counters
13. Connection memory usage statistics
14. Aggregate autovacuum stats

1. EXPLAIN: Buffers for Planning
2. pg_stat_statements: Planning Time
3. Additional & renamed wait events
4. pg_stat_activity: leader_pid for Parallel Query
5. EXPLAIN improvements for parallel workers
6. CONTEXT for failure of parameterized queries
7. pg_shmem_allocations
8. Per-statement WAL statistics
9. autovacuum WAL statistics
10. EXPLAIN WAL statistics
11. pg_stat_progress_analyze
12. pg_stat_progress_basebackup

New in Postgres 13

Thank you!

lukas@fittl.com

@LukasFittl

mailto:lukas@fittl.com

