
Transactions
in PostgreSQL and other animals

PGCon 2019, Ottawa, Canada
Thomas Munro

My introduction to
PostgreSQL

• 2001-2010 side project: travel
journals, maps, photos

• Initially ran on a beige PC under
the stairs, eventually on a lot of 19”
wide heavy metal boxes with
blinking lights

• Growing pains: Media coverage
produced database meltdown
scenarios induced by MySQL
table-level locking

• Discovered PostgreSQL 7.3 and
stayed up late learning and porting
ASAP to access its MVCC writers-
don’t-block-readers goodness

buffer pool

MySQL 
planner, executor etc

InnoDBMyISAM

PostgreSQL
planner, executor etc

zheapgist

undo

heap

etc…clog

buffer pool
transactions

recovery/rollback
indexes
tables

block storage
FKs

etc…

xact

xlog

“Storage engines” “Access methods”

btree }

Terminology
Access method: different ways of laying out and

finding data. Originally used in the 1960s by IBM to
model different kinds of hardware, then used in IBM
System R (1970s) for different types of indexes and

tables, adopted by INGRES (1970s) and POSTGRES
(1980s) which were designed to support adding new
kinds of indexes (eg GIST). Extended in PostgreSQL

12 to support new kinds of tables (“table AM”).

—> I don’t like to use “storage engine” or “pluggable
storage” for table AMs

A C I D

Atomicity. A transaction’s changes to the
state are atomic: either all happen or none
happen. These changes include database

changes, messages, and actions on transducers.

A

— Transaction Processing: Concepts and Techniques, Jim Gray & Andreas Reuter

Traditional approach (System R, DB2, Sybase,
…):

• Lock everything you modify

• If you roll back, put everything back the
way you found it! This requires keeping an
undo log, inside or alongside the redo log
(WAL)

• After committing or rolling back, everything
is either done or undone, so atomicity is
achieved

• After crash recovery, in-progress
transactions still have to be rolled back.

• Concurrent transactions are a special case:
more soon (that comes under isolation)

• Implementations vary on whether there is
one undo undo per connection, some other
number, or just one integrated with the WAL

“CLOG” scheme of PostgreSQL:

• Copy-on-write tuples forming an
update chain

• Tuples are marked in such a way that
readers can tell which transaction
wrote it

• Maintain a commit log showing which
transactions committed

• Whenever reading tuples, readers use
a “snapshot” that decides whether
they can see it

• A cost must be paid: the extra copies
of the data — aborted transactions
must eventually be garbage collected
to reclaim space, and trim the CLOG
and other data structures

• Preceding project Ingres used WAL/REDO
and UNDO logs.

• POSTGRES had neither. “When
considering the POSTGRES storage
system, we were guided by a missionary
zeal to do something different. All current
commercial systems use a storage
manager with a write-ahead log (WAL),
and we felt that this technology was well
understood. Moreover, the original Ingres
prototype from the 1970s used a similar
storage manager, and we had no desire to
do another implementation. [SK91]”

• PostgreSQL 7.1 (2001): “In this first
release of WAL, UNDO operation is not
implemented, because of lack of time.”

Why this difference?

Transaction IDs
• PostgreSQL 7.2 (2002): “There is no longer a

problem with installations that exceed four billion
transactions.” Before that, you had to dump and
restore if you ran out.

• Firebird faced the same problem but moved to 48
bit transaction IDs.

• To support circular 32 bit XIDs, we have to “freeze”
old tuples (= remove old transaction IDs) so that the
range of active XIDs never exceeds 2^31.
Sometimes the resulting “wrap-around vacuums”
cause significant grief.

• PostgreSQL 12 takes a very small step towards 64
bit “full” transaction IDs, for use by future AMs*.
Not yet used in many places but…

*Full transaction IDs will run out after ~11.7 million years of doing 50,000 TPS. After that, you’ll probably have to dump
and restore. But you’ll probably run out of LSNs first.

Pi
xa

ba
y

fre
e

cl
ip

ar
t

A hypothetical heap with no
need to freeze

• People have proposed schemes for adding a “reference” full
transaction ID to heap page headers, so that old committed
tuples don’t have to be frozen, even though tuples carry only
the lower 32 bits in their xmin and xmax as now.

• That leaves only the uncommitted transaction IDs to worry
about. We have to somehow get rid of them before the
CLOG can be truncated, so that we don’t suddenly think
that ancient aborted transactions committed.

• Hmm, if only we had a reliable technology to do arbitrary
jobs when rolling back a transaction…

*And something something multixacts. “We loved vacuum freeze so much we invented a whole new kind.”

A simpler use for undo logs
• Even though the traditional heap AM uses the CLOG strategy to

deal with atomicity at the level of tuples, there are other
transaction effects that we could track better

• Case in point: orphaned file clean-up, for the relation files used
by heap, btree, gist, gin, hash. If you create a relation and then
crash before committing, we forget to unlink the files!
postgres=# begin;
BEGIN
postgres=# create table t as select generate_series(1, 1000000);
SELECT 1000000
postgres=# select pg_backend_pid(), relfilenode from pg_class where relname = 't';
 pg_backend_pid | relfilenode
----------------+-------------
 74817 | 24576
(1 row)
 
 
$ kill -9 74817
$ ls -slaph pgdata/base/13643/24576
70928 -rw------- 1 munro staff 35M 29 May 18:45 pgdata/base/13643/24576

postgres=# begin;
BEGIN
postgres=# create table t1 ();
CREATE TABLE
postgres=# create table t2 ();
CREATE TABLE
postgres=# select * from undoinspect();
 urecptr | rmgr | flags | xid | description
------------------+---------+-------+-----+---
 0000000000003452 | Storage | P | | CREATE dbid=13643, tsid=1663, relfile=24588
 0000000000003404 | Storage | P,T | 497 | CREATE dbid=13643, tsid=1663, relfile=24585
(2 rows)

• Undo-aware RMGRs (AMs or other subsystem) can define their own types of
undo record, and store them. They must generate the exact same undo
record at redo time. In this case it’s src/backend/catalog/storage.c, which is
responsible for creating and unlinking regular relation files.

• If the transaction commits, all associated undo data is efficiently discarded by
a “discard worker”.

• If the transaction aborts, the registered callback is invoked to execute any
cleanup actions. Small transactions’ undo records are executed in the
foreground, and large transactions’ undo records are pushed to a background
“undo apply worker”. This happens automatically after crash recovery.

bool
smgr_undo(UndoRecInfo *urp_array,
 int first_idx,
 int last_idx,
 Oid reloid,
 FullTransactionId full_xid,
 BlockNumber blkno,
 bool blk_chain_complete)
{
 int i;

 for (i = first_idx; i <= last_idx; ++i)
 {
 UndoRecInfo *urec_info = &urp_array[i];
 UnpackedUndoRecord *uur = urec_info->uur;

 if (uur->uur_type == UNDO_SMGR_CREATE)
 {
 SMgrRelation srel;
 RelFileNode *rnode;
 xl_smgr_drop xlrec;

 Assert(uur->uur_payload.len == sizeof(RelFileNode));
 rnode = (RelFileNode *) uur->uur_payload.data;
 srel = smgropen(SMGR_MD, *rnode, InvalidBackendId);
 smgrdounlink(srel, false);
 smgrclose(srel);

 xlrec.rnode = *rnode;
 XLogBeginInsert();
 XLogRegisterData((char *) &xlrec, sizeof(xlrec));
 XLogInsert(RM_SMGR_ID, XLOG_SMGR_DROP);
 }
 else
 elog(PANIC,
 "smgr_undo: unknown op code %d", uur->uur_type);
 }

 return true;
}

To give it a chance to work
efficiently, the callback

receives batches of undo
records relating to the same

page of a relation. In this
simple case the record is

not page oriented.

Effects of rolling back must
be WAL logged. These are

called “compensation
records” in the literature.

On success, the passed-in
undo records can be

discarded. If we fail, or
crash before reaching this,

they’ll be retried.

Monitoring undo logs

postgres=# select * from pg_stat_undo_logs;
 log_number | persistence | tablespace | discard | insert | end | xid | pid
------------+-------------+------------+------------------+------------------+------------------+-----+-------
 0 | permanent | pg_default | 000000000000004A | 000000000000004A | 0000000000400000 | 559 | 56156
 1 | permanent | pg_default | 00000100009C1908 | 00000100009C1908 | 0000010001000000 | 562 | 56163
 2 | permanent | pg_default | 000002000000004A | 000002000000004A | 0000020000400000 | 563 | 56174
(3 rows)

• The meta-data used for space management within each undo log is: discard <=
insert <= end. Discard and insert we have met; end shows unused space that
has been allocated on disk.

• We also track the currently attached backend and xid, if there is one. These are
visible in the pg_stat_undo_logs view.

• Undo record pointers are 64 bit numbers and the address space is never
reused, but much like FullTransactionIds, 64 bits ought to be enough for anyone*

*Or, at least, LSNs will run out first

offsetlogno

Why “logs” plural?
Address space arbitrarily chopped up into
16.7m x 1TB ranges to reduce contention

0000000000000000 000000ffffffffff

0000010000000000

0000020000000000

000001ffffffffff

000002ffffffffff

log 0

log 1

log 2

1 terabyte

0000000000000000

What determines the
amount of undo data?

• You always need to keep undo data that might be needed
to roll back a transaction.

• For MVCC purposes, it depends on your tolerance. In our
current code, we keep it as long as any snapshot needs
it, but in theory we could have an adjustable retention
policy and cause errors for old snapshots so that we can
put a cap on the amount of undo data.

Consistency. A transaction is a correct
transformation of the state. The actions taken as a

group do not violate any of the integrity
constraints associated with the state. This requires

that the transaction be a correct program.

— Transaction Processing: Concepts and Techniques, Jim Gray & Andreas Reuter

C

I’m not going to talk about constraints and
locking, but please see my colleague

Kuntal Gosh’s talk “Tuple Locking
Redesigned” at 4pm for a detailed

overview of the locking system in zheap.

Isolation. Even though transactions
execute concurrently, it appears to each

transaction, T, that others executed
either before T or after T, but not both.

— Transaction Processing: Concepts and Techniques, Jim Gray & Andreas Reuter

I

Isolation levels
SQL Standard:

• UNCOMMITTED READ — challenge: got a non-performance use for this?

• READ COMMITTED — most people’s default

• REPEATABLE READ

• SERIALIZABLE — true isolation, lofty ideal, and the Standard’s default

Also:

• SNAPSHOT ISOLATION (PostgreSQL’s REPEATABLE READ)

• SERIALIZABLE SNAPSHOT ISOLATION (PostgreSQL’s SERIALIZABLE)

Traditional approach:

• UNCOMMITTED READ: All data is fair
game, results arbitrarily screwy, but it’s
fast

• READ COMMITTED: If you manage to
share-lock it, you can see it! Therefore
writers block readers, until they either roll
back (old version restored) or commit
(become visible).

• REPEATABLE* READ: Same, but share
locks are held for whole transaction
(preventing writers); lock escalation and
deadlocks become more likely

• SERIALIZABLE: Similar, but also locking
things that aren’t there (“predicates”,
“gaps”, “next key”)

Writers block readers. The problem
escalates more quickly at higher isolation
levels.

PostgreSQL approach:

• UNCOMMITTED READ: maps to
READ COMMITTED

• READ COMMITTED: Take a new
snapshot (= set of visible tansactions)
and used it to decide which tuples
you can see

• REPEATABLE READ = SI: Same, but
only take new snapshot one per
transaction.

• SERIALIZABLE = SSI: Same, but add
optimistic predicate locking scheme

Writers don’t block readers! But you
can’t update in place, and there is a
garbage collection problem.

old version

old version

old version

row

free space

free space

row

old version

row

Tr
ad

iti
on

al
 h

ea
p

row

row

row

row

old version old version

old version

Undo-based MVCC

• The original purpose of undo was to
support undoing changes permanently on
rollback

• MVCC system can also used to provide a
view older data that your snapshot needs,
so that writers don’t block readers

Durability. Once a transaction
completes successfully (commits), its
changes to the state survive failures.

— Transaction Processing: Concepts and Techniques, Jim Gray & Andreas Reuter

D

/* --------------------------------
 * RecordTransactionCommit
 *
 * Note: the two calls to BufferManagerFlush() exist to ensure
 * that data pages are written before log pages. These
 * explicit calls should be replaced by a more efficient
 * ordered page write scheme in the buffer manager
 * -cim 3/18/90
 * --------------------------------
 */
void
RecordTransactionCommit()
{
 TransactionId xid;
 int leak;

 /* ----------------
 * get the current transaction id
 * ----------------
 */
 xid = GetCurrentTransactionId();

 /* ----------------
 * flush the buffer manager pages. Note: if we have stable
 * main memory, dirty shared buffers are not flushed
 * plai 8/7/90
 * ----------------
 */
 leak = BufferPoolCheckLeak();
 FlushBufferPool(!TransactionFlushEnabled());
 if (leak) ResetBufferPool();

 /* ----------------
 * have the transaction access methods record the status
 * of this transaction id in the pg_log / pg_time relations.
 * ----------------
 */
 TransactionIdCommit(xid);

 /* ----------------
 * Now write the log/time info to the disk too.
 * ----------------
 */
 leak = BufferPoolCheckLeak();
 FlushBufferPool(!TransactionFlushEnabled());
 if (leak) ResetBufferPool();
}

University POSTGRES
approach to durability:

• COMMIT flushes all dirty
buffers buffers (“force”)

• CLOG is a plain relation,
and is access through
shared buffers

• Behold antique 4.2 code
(1994)

Traditional approach, and PostgreSQL 7.1 (2001):

• COMMIT flushes WAL records only (“no force”)

• Checkpoints and background writers flush buffers,
but the last WAL to touch a page must always be
flushed before any buffer it modifies

• Regular backends only have to write pages out if
they have to evict one and flush it first (“steal”)

Buffered access

smgr.c

md.c

bufmgr.c

relation 
files

undofile.c

undo 
files

} buffer pool• Undo logs are accessed
via regular shared buffers,
so we need to extend that
slightly to allow for new
types of data

• Such buffered access
allows for efficient access
when supporting MVCC

• Plans are afoot to access
other kinds of things
through bufmgr.c and
smgr.c too

• To handle the possibility of torn pages (power failure that
leaves you with a fraction of an old page and a fraction of a
new page), we have a “full page write” scheme, where the
first WAL record that dirties a page after a checkpoint redo
point must include a complete image of the page in the WAL

• Undo log data pages are treated the same way, and have a
standard header that include a checksum field

• An alternative double-writing scheme is used by MySQL: if
you write the page and flush it twice in succession, only one
copy can possibly be torn. This has various trade-offs but
so far has been rejected for inclusion in PostgreSQL.

Files
• The name of each 1MB file is the UndoRecPtr address of the first

byte in the file, with a dot inserted to separate the undo log number
from the rest

• When discarding files, we usually just rename them into position, so
that they become new space (similar to what we do for WAL
segments); this usually happens in the undo worker

• This means that foreground processes usually avoid having to do
slow filesystem operations

$ ls -slaph base/undo/ | head -7
total 139264
 0 drwx------ 70 munro staff 2.2K 26 Mar 09:35 ./
 0 drwx------ 7 munro staff 224B 26 Mar 09:33 ../
2048 -rw------- 1 munro staff 1.0M 26 Mar 09:38 000000.0000600000
2048 -rw------- 1 munro staff 1.0M 26 Mar 09:33 000000.0000700000
2048 -rw------- 1 munro staff 1.0M 26 Mar 09:38 000001.0000600000
2048 -rw------- 1 munro staff 1.0M 26 Mar 09:33 000001.0000700000

Tablespaces

postgres=# create tablespace ts1 location '/tmp/ts1';
CREATE TABLESPACE
postgres=# set undo_tablespaces = ts1;
SET
postgres=# insert into foo values (42);
INSERT 0 1
postgres=# select * from pg_stat_undo_logs where tablespace = 'ts1';
 log_number | persistence | tablespace | discard | insert | end | xid | pid
------------+-------------+------------+------------------+------------------+------------------+--------+-------
 60 | permanent | ts1 | 00003C0000000018 | 00003C0000000018 | 00003C0000100000 | 189257 | 46137
(1 row)
postgres=# drop tablespace ts1;
DROP TABLESPACE

2018-03-28 15:44:50.265 NZDT [46137] LOG: created undo segment "pg_tblspc/16416/PG_11_201802061/undo/00003C.0000000000"

• GUC “undo_tablespaces” controls where your session writes
undo data (similar to “temp_tablespaces”)

• Tablespace can only be dropped when contained undo logs are
empty (no attached transactions in progress, fully discarded);
attached sessions will be forcibly detached

Summary
• Zheap and other table AMs in development

can now use the 64 bit XIDs so that they don’t
need “freezing” or “wrap-around vacuums”

• Support is proposed for buffered,
checkpointed, checksummed, torn-page-proof
access to new kinds of data files (undo being
one example)

• An undo infrastructure is proposed to support
future in-place-update AMs that need rollback
actions and MVCC

• A fix the problem of orphaned files that is also
a simple test case for the the undo
infrastructure

Some references
• Looking Back at Postgres (Joseph M Hellerstein, 2019)

• System R: Relational Approach to Database Management
(Astrahan, Blasgen, Chamberlin, Gray et al, 1975)

• ARIES: A Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using Write-
Ahead Logging (Mohan et al, 1992)

• A Critique of ANSI SQL Isolation Levels (Berenson,
Bernstein, Gray, Melton, O’Neil, O’Neil, 1995)

