
© Copyright 2019 Pivotal Software, Inc. All rights Reserved.

Richard Guo / Pivotal
2019/05/31, PGCon 2019

Generating distributed plan for
PostgreSQL

Who Am I?

● Richard Guo | 峰(Feng) 郭(Guo)

● From Beijing, China

● Working at Pivotal on Greenplum

○ Merge

○ MPP

○ Support

Agenda

● When PostgreSQL meets MPP

● Distributed Plan
○ Scan
○ Join
○ Aggregation

● Comparison with Parallel Query in PostgreSQL

When PostgreSQL meets MPP

● MPP (massively parallel processing) refers to systems with two or more processors that
cooperate to carry out an operation, each processor with its own memory, operating
system and disks.

● Greenplum(master) ≈ PostgreSQL(9.4) + MPP

○ Several PostgreSQL instances to contain user-defined tables and their indexes, called segments,
and each segment contains a distinct portion of user data.

○ One PostgreSQL instance to generate plan, coordinate its work with segments, called master,
and master contains no user data.

When PostgreSQL meets MPP

● Hash distribution

○ Tuples are distributed based on values of a distribution
key (one or more columns).

● Random distribution

○ Tuples are distributed in a round-robin way to the
segments.

When PostgreSQL meets MPP

Tables used as an example:

CREATE TABLE t1 (c1 int, c2 int, c3 int) DISTRIBUTED BY (c1);
CREATE TABLE t2 (c1 int, c2 int, c3 int) DISTRIBUTED BY (c1);

1. Each segment scans on its local data.
2. Master runs gather and outputs the complete results.

Distributed Plan: Scan

SELECT * from t1 where t1.c2 = 1;
 QUERY PLAN

 Gather Motion 3:1
 -> Seq Scan on t1
 Filter: (c2 = 1)
(3 rows)

Distributed Plan: Join

1. To perform a join, matching rows must be located together on the same segment. If not,
data needs to be routed among segments.

○ Redistribute: each segment rehashes the data and sends the rows to the appropriate segments
according to hash key.

○ Broadcast: each segment sends its own, individual rows to all other segments so that every
segment instance has a complete local copy of the table.

2. Each segment then performs the join locally, in parallel.

3. Master runs gather and outputs the complete results.

Distributed Plan: Join

If we are performing equi-join on distribution keys, we do not need route data among
segments.

SELECT * from t1, t2 where t1.c1 = t2.c1;
 QUERY PLAN

 Gather Motion 3:1
 -> Hash Join
 Hash Cond: (t1.c1 = t2.c1)
 -> Seq Scan on t1
 -> Hash
 -> Seq Scan on t2
(6 rows)

Distributed Plan: Join

Else we may need to redistribute one table,

SELECT * from t1, t2 where t1.c1 = t2.c2;
 QUERY PLAN

 Gather Motion 3:1
 -> Hash Join
 Hash Cond: (t1.c1 = t2.c2)
 -> Seq Scan on t1
 -> Hash
 -> Redistribute Motion 3:3
 Hash Key: t2.c2
 -> Seq Scan on t2
(8 rows)

Distributed Plan: Join

Or two tables,

SELECT * from t1, t2 where t1.c2 = t2.c2;
 QUERY PLAN

 Gather Motion 3:1
 -> Hash Join
 Hash Cond: (t1.c2 = t2.c2)
 -> Redistribute Motion 3:3
 Hash Key: t1.c2
 -> Seq Scan on t1
 -> Hash
 -> Redistribute Motion 3:3
 Hash Key: t2.c2
 -> Seq Scan on t2
(10 rows)

Distributed Plan: Join

Or instead broadcast one table, depending on costs.

SELECT * from t1, t2 where t1.c2 = t2.c2;
 QUERY PLAN
--
 Gather Motion 3:1
 -> Hash Join
 Hash Cond: (t1.c2 = t2.c2)
 -> Seq Scan on t1
 -> Hash
 -> Broadcast Motion 3:3
 -> Seq Scan on t2
(7 rows)

Distributed Plan: Join

● For non equi-join, we cannot perform redistribution. We can only perform broadcast.

● But be careful about broadcast. In the case of outer joins, broadcasting non-nullable side
would cause problems. It may cause the outer join to emit null-extended rows that should
not have been formed. So always broadcast the nullable side.

Distributed Plan: Aggregate without Group

1. To perform aggregation with DISTINCT, tuples with the same values of the DISTINCT
columns must be located on the same segment in order to perform deduplication. If not,
data needs to be redistributed among segments.

2. Each segment then performs the aggregation locally, in parallel.

a. aggtransfn and NULL aggfinalfn

3. Master runs gather and performs a final aggregation.

a. aggcombinefn and aggfinalfn

Distributed Plan: Aggregate without Group

No need to redistribute data if there is no DISTINCT, or DISTINCT only on distribution key.

SELECT avg(c1) from t1;
 QUERY PLAN

 Aggregate
 -> Gather Motion 3:1
 -> Aggregate
 -> Seq Scan on t1
(4 rows)

Distributed Plan: Aggregate without Group

Need to redistribute data if there is DISTINCT on non-distribution key.

SELECT avg(distinct c2) from t1;
 QUERY PLAN

 Aggregate
 -> Gather Motion 3:1
 -> Aggregate
 -> Redistribute Motion 3:3
 Hash Key: t1.c2
 -> Seq Scan on t1
(6 rows)

Distributed Plan: Aggregate with Group

1. Gather tuples belonging to the same group to the same segment for aggregation.
2. Distribute different groups to different segments for parallelism.

Group by
Distribution Key?

DISTINCT?

YES DON’T CARE

NO NO

NO YES

CASE 1

CASE 2

CASE 3

Distributed Plan: Aggregate with Group

CASE 1: Group by distribution key

1. Each segment performs the aggregation locally, in parallel.

2. Master runs gather and outputs the complete results.

Distributed Plan: Aggregate with Group

SELECT avg(c2) from t1 group by c1;
 QUERY PLAN

 Gather Motion 3:1
 -> HashAggregate
 Group Key: c1
 -> Seq Scan on t1
(4 rows)

CASE 1

Distributed Plan: Aggregate with Group

CASE 2: Group by non-distribution key, and no DISTINCT.

1. Each segment redistributes tuples by group key.

2. Each segment performs the aggregation locally, in parallel.

3. Master runs gather and outputs the complete results.

Distributed Plan: Aggregate with Group

CASE 2: Group by non-distribution key, and no DISTINCT.

1. Each segment performs the aggregation locally for the first time, in parallel.

a. aggtransfn and NULL aggfinalfn.

2. Each segment redistributes data (group key + transvalue) by group key.

3. Each segment performs the aggregation locally for the second time, in parallel.

a. aggcombinefn and aggfinalfn.

4. Master runs gather and outputs the complete results.

Distributed Plan: Aggregate with Group

SELECT avg(c3) from t1 group by c2;
 QUERY PLAN
--
 Gather Motion 3:1
 -> HashAggregate
 Group Key: t1.c2
 -> Redistribute Motion 3:3
 Hash Key: t1.c2
 -> HashAggregate
 Group Key: t1.c2
 -> Seq Scan on t1
(8 rows)

Distributed Plan: Aggregate with Group

SELECT avg(c3) from t1 group by c2;

group avg

20 325

10 150

20 250

10 350

20 450

10 100

20 200

10 300

20 400

group sum N

10 400 2

20 600 2

group sum N

10 500 2

20 700 2

group sum N

10 400 2

10 500 2

group sum N

20 600 2

20 700 2

group sum N

20 1300 4

group sum N

10 900 4

group avg

10 225

Final

Final

aggtransfn Redistribute(c2) aggcombinefn aggfinalfnc2 c3

CASE 1

Distributed Plan: Aggregate with Group

CASE 3: Group by non-distribution key, aggregate with DISTINCT.

1. Each segment redistributes tuples by group key.

2. Each segment performs the aggregation locally, in parallel.

3. Master runs gather and outputs the complete results.

Distributed Plan: Aggregate with Group

CASE 3: Group by non-distribution key, aggregate with DISTINCT.

1. Each segment redistributes tuples by aggregate key.

2. Each segment performs the aggregation locally for the first time, in parallel.

a. aggtransfn and NULL aggfinalfn, applying DISTINCT.

3. Each segment redistributes data (group key + transvalue) by group key.

4. Each segment performs the aggregation locally for the second time, in parallel.

a. aggcombinefn and aggfinalfn.

5. Master runs gather and outputs the complete results.

Distributed Plan: Aggregate with Group

SELECT avg(distinct c3) from t1 group by c2;
 QUERY PLAN

 Gather Motion 3:1
 -> GroupAggregate
 Group Key: t1.c2
 -> Sort
 Sort Key: t1.c2
 -> Redistribute Motion 3:3
 Hash Key: t1.c2
 -> GroupAggregate
 Group Key: t1.c2
 -> Sort
 Sort Key: t1.c2
 -> Redistribute Motion 3:3
 Hash Key: t1.c3
 -> Seq Scan on t1
(14 rows)

Distributed Plan: Aggregate with Group

SELECT avg(distinct c3) from t1 group by c2;

10 200

20 100

10 400

20 400

10 100

20 100

10 200

20 300

10 200

10 200

10 400

20 400

10 100

20 100

20 100

20 300

10 200

10 400

20 400

10 100

20 100

20 300

group sum N

10 100 1

20 400 2

group sum N

10 600 2

20 400 1

group sum N

10 100 1

10 600 2

group sum N

20 400 2

20 400 1

group sum N

10 700 3

group sum N

20 800 3

group avg

10 233

group avg

20 266

Final

Final

distinctRedistribute(c3) aggtransfn Redistribute(c2) aggcombinefnc2 c3 aggfinalfn

Distributed Plan: Aggregate with Group

CASE 3: Group by non-distribution key, aggregate with DISTINCT.

1. Each segment performs local deduplication via hash aggregation by (group key +
aggregate key).

a. Then the aggregate key is distinct within a group locally.

2. Each segment redistributes data (group key + aggregate key) by group key.

3. Each segment performs another deduplication via another hash aggregation by (group
key + aggregate key).

a. Then the aggregate key is distinct within a group globally.

4. Each segment performs the aggregation locally, in parallel.

a. aggtransfn and aggfinalfn

5. Master runs gather and outputs the complete results.

Distributed Plan: Aggregate with Group

SELECT avg(distinct c3) from t1 group by c2;
 QUERY PLAN

 Gather Motion 3:1
 -> HashAggregate
 Group Key: t1.c2
 -> HashAggregate
 Group Key: t1.c2, t1.c3
 -> Redistribute Motion 3:3
 Hash Key: t1.c2
 -> HashAggregate
 Group Key: t1.c2, t1.c3
 -> Seq Scan on t1
(10 rows)

Distributed Plan: Aggregate with Group

SELECT avg(distinct c3) from t1 group by c2;

10 200

20 100

10 400

20 400

10 100

20 100

10 200

20 300

10 200

10 400

20 100

20 400

10 100

10 200

20 100

20 300

20 100

20 100

20 300

20 400

10 100

10 200

10 200

10 400

20 100

20 300

20 400

10 100

10 200

10 400

group sum N

10 700 3

group sum N

20 800 3

group avg

10 233

group avg

20 266

Final

Final

Redistribute(c2) aggtransfndeduplicationc2 c3 deduplication aggfinalfn

Comparison with Parallel Query in PostgreSQL

1. Tuples need to be distributed in a
pre-defined policy.

2. Exchange operators

○ Redistribution, Broadcast, Gather

3. Tuples can be routed among segments via
redistribution or broadcast. And tuples can
flow between segments and master via
gather.

○ Final aggregation can be done by segments
in parallel.

○ Parallel DISTINCT aggregation is supported.

1. Tuples do not need to be distributed well in
advance.

2. Exchange operators

○ Gather

3. Tuples can only flow between workers and
gather.

○ Final aggregation can be done by gather
only.

○ Parallel DISTINCT aggregation is not
supported.

Greenplum Parallel Query in PostgreSQL

Case-study: Parallel Aggregation

1. Each segment performs an aggregation
step, producing a partial result for each
group that exists on that segment.

○ First stage, performed in parallel.

2. The partial results are redistributed among
segments by group key.

3. Each segment re-aggregates the results,
producing the final result for each group it
received.

○ Second stage, performed in parallel.

4. The final results are transferred to master for
outputs via Gather.

1. Each worker performs an aggregation step,
producing a partial result for each group of
which that worker is aware.

○ First stage, performed in parallel.

2. The partial results are transferred to the
leader via Gather or Gather Merge.

3. The leader re-aggregates the results across
all workers in order to produce the final
result.

○ Second stage, performed by leader only.

Greenplum Parallel Query in PostgreSQL

Thank You

Output: Thank You
Gather Motion 3:1 (slice1; segments: 3)
 -> Index Scan using Common_phrases_idx on Common_phrases
 Index Cond: (value = ‘Thank You’)
 Filter: (Language = ‘English’)

