
Toward Implementing
Incremental View Maintenance
on PostgreSQL

Yugo Nagata @ SRA OSS, Inc. Japan.

PGCon 2019
- May 31, 2019

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 2

Who am I
● Yugo Nagata

– Engineer at SRA OSS, Inc. Japan
● PostgreSQL experiences

– Technical support
– consulting
– Education
– R&D

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 3

Outline
● Introduction

– Views and materialize views
– Incremental View Maintenance (IVM)

● Implementing IVM on PostgreSQL

– What to be considered to implement IVM
– Work-in-Progress patch
– How it works

● Examples

– Performance Evaluation
● Discussions

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 4

What is Incremental View
Maintenance (IVM)

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 5

Views

device
name pid 　G1 P1 　G2 P1
 G3 P2

parts
 pid price 　P1 10 　P2 20

V
name pid 　 price　G1 P1 　 10　G2 P1　 10
 G3 P2 20

* JOIN

CREATE VIEW V AS
 SELECT device_name, pid, price
 FROM devices d
 JOIN parts p
 ON d.pid = p.pid;

● A view is a virtual relation
defined by a query on base
tables.

– Only the definition query is
stored.

● The result is computed when
a query is issued to a view. Table data Table data

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 6

Materialized Views
CREATE MATERIALIZED VIEW V AS
 SELECT device_name, pid, price
 FROM devices d
 JOIN parts p
 ON d.pid = p.pid;

● Materialized views persist the
results in a table-like form.

● No need to compute the result
when a query is issued.

– Enables faster access to data.
● The data is not always up to date.

– Need maintenance.

device
name pid 　G1 P1 　G2 P1
 G3 P2

parts
 pid price 　P1 10 　P2 20

V
name pid 　 price　G1 P1 　 10　G2 P1　 10
 G3 P2 20

* JOIN

Materialized view
data

Table data Table data

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 7

Creating Materialized Views
CREATE MATERIALIZED VIEW V AS
 SELECT device_name, pid, price
 FROM devices d
 JOIN parts p
 ON d.pid = p.pid;

● The data of a materialized view is
computed at definition time.

– This is similar to “CREATE TABLE
AS” statement.

– The result of the definition query is
inserted into the materialized view.

● Need maintenance to keep
consistency between the
materialized data and base tables.

insert

device
name pid 　G1 P1 　G2 P1
 G3 P2

parts
 pid price 　P1 10 　P2 20

V
name pid 　 price　G1 P1 　 10　G2 P1　 10
 G3 P2 20

* JOIN

Materialized view
data

Table data Table data

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 8

Refreshing Materialized Views

● Need to re-compute the
result of the definition
query.

● Replacing the the
contents of a materialized
view with the result.

insert

temporary table
device
name pid 　G1 P1 　G2 P1
 G3 P2

parts
 pid price 　P1 10 　P2 20

V
name pid 　 price　G1 P1 　 10　G2 P1　 10
 G3 P2 20

* JOIN

replace

Table data Table data

Materialized view
data

REFRESH MATERIALIZED VIEW V;

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 9

Refreshing Materialized Views

insert

temporary table

merge

device
name pid 　G1 P1 　G2 P1
 G3 P2

parts
 pid price 　P1 10 　P2 20

V
name pid 　 price　G1 P1 　 10　G2 P1　 10
 G3 P2 20

* JOIN

diff

Table data Table data

Materialized view
data

REFRESH MATERIALIZED VIEW CONCURRENTLY V;

● With CONCURRENTLY
option, the materialized view
is refreshed without locking
out concurrent selects on the
view.

● Need to re-compute the result
of the definition query, too.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 10

Incremental View Maintenance
● Incremental View Maintenance (IVM)

– Compute and apply only the incremental changes to the
materialized views

Base relationsBase relations

Materialized view

Base relations
Updated

base relations

Incremental maintenance

IVM

Refreshing

V=Q v (D)

D u

Qv

D'=u (D)

Qv

V new=Qv (D ')

δu (D)

δu (V)

Base relations
Updated

base relations

Updated
base relations

Updated
materialized View

re
c
o
m

p
u

ta
t io

n

View
definition

Update query

Changes of
base tables

Changes of
materialized view

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 11

Basic Theory of IVM
● View definition

– Ex.) Natural join viewV ≝ R ⋈ S
● Change on a base tableR ← (R − ∇R ∪ ∆R)
● Calculation of change on view∇V = ∇R ⋈ S∆V = ∆R ⋈ S
● Apply the change to the viewV ← (V − ∇V ∪ ∆V)

R, S base tables∇R deleted tuples∆R inserted tuples
SELECT * FROM R NATURAL JOIN S;

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 12

Basic Theory of IVM: Example (1)

number english

1 one

2 two

3 three

number roman

1 I

2 II

3 III

R S

number english roman

1 one I

2 two II

3 three III

V ≝ R ⋈ S natural
join

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 13

Basic Theory of IVM: Example (2)

number english

1 one → ONE

2 two

3 three

number roman

1 I

2 II

3 III

R ← (R − ∇R ∪ ∆R) S

number english roman

1 one I

∇V = ∇R ⋈ Snatural
join

number english

1 one

number english

1 ONE

∇R
∆R

number english roman

1 ONE I

∆V = ∆R ⋈ S
natural
join

Table R is changed

Calculate changes on view V

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 14

Basic Theory of IVM: Example (3)

number english roman

1 one I

∇V
number english roman

1 ONE I

∆V

number english roman

1 one → ONE I

2 two II

3 three III

V ← (V − ∇V ∪ ∆V)delete
insert

View V is update by applying
the calculated changes

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 15

Implementing IVM on PostgreSQL

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 16

Considerations implementing IVM (1)

● How to extract changes on base tables

– AFTER trigger and Transition Tables
– Logical decoding of WAL is another idea.

● How to compute the delta to be applied to materialized views

– Basically, based on relational algebra (or bag algebra).
– Starting from a simple view definition:

● Selection-Projection-Join views

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 17

Considerations implementing IVM (2)

● When to maintain materialized views

– Immediate maintenance:
● The materialized view is updated in the same transaction where the

base table is updated.
– Deferred maintenance:

● The materialized view is updated after the transaction is committed
– When view is accessed
– As a response to user command (like REFRESH)
– periodically
– etc.

● How to handle views with tuple duplicates or DISTINCT clause

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 18

Views with Tuple Duplicates

english roman

one I

two II

two II

three III

V
english roman

two II

∇V
delete

● Only one tuple of duplicated two must be deleted.
● DELETE statement can not be used because this delete two tuples.

SELECT english, roman
 FROM R JOIN S USING (id);

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 19

Views with DISTINCT clause

english roman

one I

two II

three III

V
english roman

two II

∇V
delete?

● A tuple is deleted if and only if duplicity of the tuple becomes zero.
● Additional tuple can not be inserted if there is already the same one.

SELECT DISTINCT english, greek
 FROM R JOIN S USING (id);

english roman

three III

∆Vinsert?

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 20

IVM Implementation using OIDs
(PGConf.EU 2018)

● PoC (Proof of Concept) implementation

– Using row OIDs as “primary keys” of tuples in a materialized
view

– This can handle views with tuple duplicates correctly.
● DISTINCT is not supported.

– Materialized views can be incrementally updated using
REFRESH command. (a kind of Deferred Maintenance)

● Problems:

– OID system column is removed since PostgreSQL 12.
– Needs many changes in executor nodes.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 21

New IVM Implementation
● Working-in-Progress patch has been submitted

● Provides a kind of Immediate Maintenance

– Materialized views can be updated automatically and
incrementally after base tables are updated.

● Supports views including duplicate tuples or

DISTINCT clause in the view definition

– "counting algorithm" is used

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 22

Counting algorithm (1)
● Algorithm for handling tuple duplicate or DISTINCT in IVM

– The numbers of tuples are counted and this information is
stored in materialized views.

When tuples are to be inserted into the view, the count increases.

When tuples are to be deleted from the view, the count decreases.

If the count becomes zero, this tuple is deleted.

english roman count

one I 1

two II 2

three III 1

V

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 23

Counting algorithm (2)
● Algorithm for handling tuple duplicate or DISTINCT in IVM

– The numbers of tuples are counted and this information is
stored in materialized views.

● When tuples are to be inserted into the view, the count increases.
● When tuples are to be deleted from the view, the count decreases.
● If the count becomes zero, this tuple is deleted.

english roman count

one I 1

two II 2 → 1

three III 1 → 2

V
english roman count

two II 1

∇V
delete

english roman count

three III 1

∆Vinsert

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 24

How it works

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 25

Creating materialized views (1)
● CREATE INCREMENTAL MATERIALIZED VIEW

– Creates matrialized views which is updated
automatically and incrementally after base tables are
changed

– This syntax is just tentative, so it may be changed.

CREATE INCREMENTAL MATERIALIZED VIEW MV AS
 SELECT device_name, pid, price
 FROM devices d
 JOIN parts p
 ON d.pid = p.pid;

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 26

Creating materialized views (2)
● When populating the matrialized view:

– The number of tuples are counted by adding count(*)
and GROUP BY to the query.

– The result of count is stored in the matview as a special
column named "__ivm_count__".

CREATE INCREMENTAL MATERIALIZED VIEW MV AS
 SELECT count(*) AS __ivm_count__,
 device_name, pid, price
 FROM devices d
 JOIN parts p
 ON d.pid = p.pid
 GROUP BY device_name, pid, price;

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 27

Creating materialized views (3)
● AFTER triggers are created on the all base tables.

– For INSERT, DELETE, and UPDATE
– Statement level trigger
– With Transition Tables

● Triggers are Created automatically and internally rather than
issuing CREATE TRIGGER statement.
– Similar to the implementation of foreign key constrains

CREATE TRIGGER IVM_trigger_upd_16598
 AFTER UPDATE ON devises
 REFERENCING NEW TABLE AS ivm_newtable OLD TABLE AS ivm_oldtable
 FOR EACH STATEMENT
 EXECUTE FUNCTION IVM_immediate_maintenance(‘public.mv’);

Example of an equivalent query:

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 28

Transition Tables

● This is a feature of AFTER trigger since PostgreSQL 10.
● Changes on tables can be referred in the trigger function using

table names specified by REFERENCING clause.

– ivm_oldtable contains tuples deleted from the table in a statement.
– ivm_newtable contains tuples newly inserted into the table.
– In theory, corresponding ∇R and ∆R respectively.

CREATE TRIGGER IVM_trigger_upd_16598
 AFTER UPDATE ON devises
 REFERENCING NEW TABLE AS ivm_newtable OLD TABLE AS ivm_oldtable
 FOR EACH STATEMENT
 EXECUTE FUNCTION IVM_immediate_maintenance(‘public.mv’);

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 29

Calculating Changes on Views
● Calculate the changes on the materialized view by:

– Replacing the base table in the view definition query with the
transition table.

– Using count(*) and GROUP BY to count the duplicity of tuples.
● The results are stored into temporary tables. (as ∇V and ∆V)

CREATE TEMPORARY TABLE tempname_new AS
 SELECT count(*) AS __ivm_count__, device_name, pid, price
 FROM ivm_newtable d
 JOIN parts p
 ON d.pid = p.pid
 GROUP BY device_name, pid, price;

CREATE TEMPORARY TABLE tempname_old AS
 SELECT count(*) AS __ivm_count__, device_name, pid, price
 FROM ivm_oldtable d
 JOIN parts p
 ON d.pid = p.pid
 GROUP BY device_name, pid, price;

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 30

Applying Changes to View (1)
● The materialized view is updated by merging the

calculated changes.

– For each tuple in the change:
● If the the corresponding tuple already exists, the value of

__ivm_count__ column in the view is updated
● Rather than executing DELETE or INSERT simply

– When the values becomes zero, the corresponding tuple is
deleted.

– Using modifying CTE (WITH clause)

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 31

Applying Changes to View (2)
● Decrease __ivm_count__, or delete an old tuple

WITH t AS (
 SELECT diff.__ivm_count__,
 (diff.__ivm_count__ = mv.__ivm_count__) AS for_dlt,
 mv.ctid
 FROM matview_name AS mv, tempname_old AS diff
 WHERE (mv.device_name, mv.pid, mv.price)
 = (diff.device_name, diff.pid, diff.price)
),
updt AS (
 UPDATE mateview_name AS mv
 SET __ivm_count__ = mv.__ivm_count__ - t.__ivm_count__
 FROM t
 WHERE mv.ctid = t.ctid AND NOT for_dlt
)
 DELETE FROM matview_name AS mv
 USING t
 WHERE mv.ctid = t.ctid AND for_dlt;

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 32

Applying Changes to View (3)
● Increase __ivm_count__, or Insert a new tuple

WITH updt AS (
 UPDATE matview_name AS mv
 SET __ivm_count__ = mv.__ivm_count__ + diff.__ivm_count__
 FROM temptable_new AS diff
 WHERE (mv.device_name, mv.pid, mv.price)
 = (diff.device_name, diff.pid, diff.price)
 RETURNING diff.device_name, diff.pid, diff.price
)
 INSERT INTO matview_name
 (SELECT * FROM temptable_new AS diff
 WHERE (diff.device_name, diff.pid, diff.pric)
 NOT IN (SELECT * FROM updt));

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 33

Access to materialized views
● When SELECT is issued for materialized views with IVM:

– case 1: Defined with DISTINCT:
● All columns (except to __ivm_count__) of each tuple are

returned.
● Duplicity of tuples are already eliminated by GROUP BY.

– case 2: DISTINCT is not used:
● Returns each tuple __ivm_count__ times.
● By rewriting the SELECT query to replace the view with a

sub-query which joins the view and generate_series
function.

 SELECT mv.* FROM mv, generate_series(1, mv.__ivm_count__);

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 34

Examples

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 35

Example 1
postgres=# CREATE INCREMENTAL MATERIALIZED VIEW m AS SELECT * FROM t0;
SELECT 3
postgres=# SELECT * FROM m;
 i

 3
 2
 1
(3 rows)

postgres=# INSERT INTO t0 VALUES (4);
INSERT 0 1
postgres=# SELECt * FROM m;
 i

 3
 2
 1
 4
(4 rows)

Insert a tuple into the base table.

Creating a materialized view with IVM option

The view is automatically updated.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 36

Example 2-1
postgres=# SELECT * FROM t1;
 id | t
----+---
 1 | A
 2 | B
 3 | C
 4 | A
(4 rows)

postgres=# CREATE INCREMENTAL MATERIALIZED VIEW m1 AS SELECT t FROM t1;
SELECT 3
postgres=# SELECT * FROM m1;
 t

 A
 A
 C
 B
(4 rows)

Creating a materialized view with tuple duplicates

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 37

Example 2-2
postgres=# INSERT INTO t1 VALUES (5, 'B');
INSERT 0 1
postgres=# DELETE FROM t1 WHERE id IN (1,3);
DELETE 2
postgres=# SELECT * FROM m1;
 t

 B
 B
 A
(3 rows)

Before:

t

 A
 A
 C
 B
(4 rows)

The view with tuple duplicates is correctly updated.

Inserting (5,B) into
and deleting (1, A), (3, C) from
the base table.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 38

Example 3

postgres=# SELECT *, __ivm_count__ FROM m1;
 t | __ivm_count__
---+---------------
 B | 2
 B | 2
 A | 1
(3 rows)

postgres=# EXPLAIN SELECT * FROM m1;
 QUERY PLAN
--
 Nested Loop (cost=0.00..61.03 rows=3000 width=2)
 -> Seq Scan on m1 mv (cost=0.00..1.03 rows=3 width=10)
 -> Function Scan on generate_series (cost=0.00..10.00 rows=1000 width=0)
(3 rows)

__ivm_count__ column is invisible for users
when "SELECT * FROM ..." is issued,

but users can see this by specifying it explicitly.

The internal usage of generate_series
function is visible in the EXPLAIN result.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 39

Simple Performance Evaluation (1)
● Materialized views of a simple join using pgbench tables:

CREATE MATERIALIZED VIEW mv_normal AS

 SELECT aid, bid, abalance, bbalance

 FROM pgbench_accounts JOIN pgbench_branches
USING (bid)

 WHERE abalance > 0 OR bbalance > 0;

CREATE INCREMENTAL MATERIALIZED VIEW mv_ivm AS

 SELECT aid, bid, abalance, bbalance

 FROM pgbench_accounts JOIN pgbench_branches
USING (bid)

 WHERE abalance > 0 OR bbalance > 0;

Scale factor of pgbench: 100

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 40

Simple Performance Evaluation (2)
test=# REFRESH MATERIALIZED VIEW mv_normal ;
REFRESH MATERIALIZED VIEW
Time: 11210.563 ms (00:11.211)

test=# CREATE INDEX on mv_ivm (aid,bid);
CREATE INDEX
test=# SELECT * FROM mv_ivm WHERE aid = 1;
 aid | bid | abalance | bbalance
-----+-----+----------+----------
 1 | 1 | 10 | 10
(1 row)

Time: 2.498 ms
test=# UPDATE pgbench_accounts SET abalance = 1000 WHERE aid = 1;
UPDATE 1
Time: 18.634 ms
test=# SELECT * FROM mv_ivm WHERE aid = 1;
 aid | bid | abalance | bbalance
-----+-----+----------+----------
 1 | 1 | 1000 | 10
(1 row)

Creating an index on mv_ivm

The standard REFRESH of mv_normal
took more than 10 seconds.

Updating a tuple in pgbench_accounts took 18ms.

mv_ivm was updated automatically and correctly.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 41

Simple Performance Evaluation (3)
test=# DROP INDEX mv_ivm__aid_bid_idx ;
DROP INDEX
Time: 10.613 ms

test=# UPDATE pgbench_accounts SET abalance = 2000 WHERE aid = 1;
UPDATE 1
Time: 3931.274 ms (00:03.931)

However, if there are not indexes on mv_ivm, it
took about 4 sec.

Although this is faster than normal REFRESH,
appropriate indexes are needed on
materialized views for efficient IVM.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 42

Current Restrictions
● Supported:

– selection, projection, inner join, DISTINCT
● Not supported:

– Aggregation and GROUP BY
– Self-join, sub-queries, OUTER JOIN, CTE, window

functions
– Set operations (UNION, EXCEPT, INTERSECT)

● I plan to deal with some aggregations by the first release.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 43

Timing of View Maintenance
● Currently, only Immediate Maintenance is supported:

– Materialized views are updated immediately when a base table is modified.

● Deferred Maintenance:

– Materialized views are updated after the transaction, for example, by the
user command like REFRESH.

– Need to implement a mechanism to maintain “logs” for recording changes
of base tables and another algorithm to update materialized views.

● There could be another implementation of Immediate Maintenance

– Materialized views are updated at the end of a transaction that modified
base tables, rather than in AFTER trigger.

– Needs “logs” mechanism as well as Deferred.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 44

About counting algorithm
● "__ivm_count__" is treated as a special column name.

– Maybe this name has to be inhibited in user tables.
– Is it acceptable to use such columns for IVM,

or is there other better way?

● generate_series function is used when materialized views with tuple
duplicates is accessed:

– We can make a new set returning function instead of generate_series.
– Performance issues:

● Planner’s estimation of rows number is wrong.
● The cost of join with this function could be high.

→ We might have to add a new plan node for IVM matrialized views
rather than using a set returning function.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 45

Other issues
● Concurrent transactions

– When concurrent transactions modify base tables under the same
materialized view, lock waiting and race condition could occur.

– Need more investigation

● Optimization

– “counting” is unnecessary if a view doesn’t have DISTINCT or
duplicates.

– When overhead of IVM is higher than normal REFRESH, we
should use the latter.

● Using cost estimated by optimizer

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 46

Summary
● Our implementation of IVM on PostgreSQL

– Immediate View Maintenance using AFTER trigger
– Views with tuple duplicates or DISTINCT

● counting algorithm
● To do:

– Aggregation and GROUP BY (for the first release of IVM)
– Deferred Maintenance
– Concurrent transaction issues
– Optimizations

● Working-in-Progress patch has been submitted to pgsql-hackers

– Subject: Implementing Incremental View Maintenance

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 47

Thank you

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33
	ページ 34
	ページ 35
	ページ 36
	ページ 37
	ページ 38
	ページ 39
	ページ 40
	ページ 41
	ページ 42
	ページ 43
	ページ 44
	ページ 45
	ページ 46
	ページ 47

