Learning to Hack on Postgres Planner

Melanie Plageman

Goals

* Provide a tangible, trivial example of adding a fix to PostgreSQL planner

e Start a discussion on specifying where to add new optimizations to
PostgreSQL planner

Table of Contents

* Postgres Planner Basics
* Query Planning

* Guidelines for New Optimizations
 Case Study:

e Current Plan and Semantics

* |dentifying a Target Plan and Query Tree Transformation
* Constant Folding
e ANY Sublink Pullup

e Resources and Discussion

github.com/melanieplageman

l, /debugging planner Slides and Glossary
l, /postgres/tree Code
l, /const folding sublink wrong Constant Folding
l, /qual scoped const folding sublink Constant Folding only in the qual

l, /const ANY sublink pullup ANY Sublink Pullup

Query Planning

SQL statement to plan tree

SELECT a FROM foo;

(3 rows)

Query Plan

Parsing Planning Execution

Tree Tree

Query Tree

SET debug print parse
TO on;

SELECT a
FROM foo

WHERE 5

{QUERY
:rtable (

{RTE
:eref

{ALIAS
:aliasname foo

:colnames ("a")
:jointree
{FROMEXPR
:quals
{OPEXPR
zargs (
{OPEXPR
rargs (
{CONST
:constvalue 4 [

{CONST
:constvalue 4 [

{CONST
:constvalue 4 |
:targetlList (
{TARGETENTRY
:expr
{VAR
:resname a

.]

v]
v]

{QUERY
:rtable (

{RTE
:eref

{ALIAS
targetList jointree :aliasname foo

rtable
:colnames ("a"

:jointree

{FROMEXPR

:quals
expr eref quals {OP EXPR
L < rargs (
{OPEXPR
rargs (

{CONST
aliasname argl arg2 :constvalue 4 [1 ..]

{CONST
:constvalue 4 [2 ..]

OPEXPR' {CONST
:constvalue 4 [4 ..]
argl arg2 :targetlist (
{TARGETENTRY
:expr
{VAR
) :resname a

et

fromlist

OPEXPR"

Semantic Optimization

SELECT a FROM foo WHERE

SELECT a FROM foo WHERE

SELECT a FROM foo WHERE 1 + 2 = 4; SELECT a FROM foo WHERE FALSE;

) O

targetlList rtable jointree
targetList rtable jointree
from] ist
FROM
f.o;Il.st. EXPR
8 l Y
OPEXPR expr eref quals

aliasname argl arg?

OPEXPR’ @

argl argz

aliasname

Cost-based Optimization

X X

/N / N\

X baz X foo

/N /N

foo Dbar bar baz

Plan Tree

SET debug print plan
TO on;

SELECT a
FROM foo

WHERE 5

{PLANNEDSTMT
:planTree
{RESULT
:targetlist (
{TARGETENTRY
rexpr
{VAR
:resname a
:resconstantqual (
{CONST
:constvalue 1 [o]

planTree

resconstant

targetlList
qual

TARGET
ENTRY

{PLANNEDSTMT
:planTree
{RESULT
:targetlist (
{TARGETENTRY
:expr
{VAR
:resname a
:resconstantqual (
{CONST
:constvalue 1 |

-]

Guidelines for New Optimizations

@ Does it always retain semantic correctness?

(2) Does it inhibit downstream optimizations?

Optimization Order Matters

An optimization for one query can be a regression for another
Planning steps have expectations for the query tree

(2) Does it inhibit downstream optimizations?

Optimization Order Matters

SELECT * FROM A, B, C c =7
WHERE a IN (Cc=a=a=/7/
SELECT b FROM & WHERE b =5 { a, ¢, 7 } =
) AND a = ¢
AND c = /; = 5

(2) Does it inhibit downstream optimizations?

Optimization Order Matters

c =7 c =7
C=a=>a-=/7/ C=a>=>a-=/7/
{ a, ¢, 7 } = =5
1. Pullup
= 5 a = = a = 5,

2. Pre-process

{J5}= = C

{a)c)7) 15}=

(2) Does it inhibit downstream optimizations?

Optimization Order Matters

SELECT * FROM A, B, C QUERY PLAN
WHERE a IN (
SELECT b FROM 5 WHERE b = 5 Result
) AND a = One-Time Filter:
AND c = /;

(2) Does it inhibit downstream optimizations?

Order matters

An optimization for one query can be a regression for another
Planning steps have expectations for the query tree

(2) Does it inhibit downstream optimizations?

Order matters

An optimization for one query can be a regression for another
Planning steps have expectations for the query tree

@ s the improvement in execution time worth
the cost in planning time?

No in the case of exhaustive join order = 0(n!)

/ \ E

/ \ f \
/ \ / \
/ \ / \

20823
gege ogegg 0C

@ s the complexity cost commensurate with
the performance benefit?

* Narrow use cases

* Optimizations for obscure features
* New APIs without reuse potential

Case Study

Adding a planner improvement

Table "public.foo" Table "public.bar"”

Column Type Column Type

a integer b integer

SELECT a FROM foo WHERE (SELECT b FROM bar);

NULL = Unknown

T TR

NULL = Unknown

T TR

TRUE TRUE TRUE TRUE TRUE

TRUE FALSE TRUE FALSE FALSE

FALSE FALSE FALSE FALSE TRUE

NULL = Unknown

T IR

TRUE TRUE TRUE TRUE TRUE
TRUE FALSE TRUE FALSE FALSE
FALSE FALSE FALSE FALSE TRUE
TRUE NULL TRUE NULL NULL
FALSE NULL NULL FALSE NULL

NULL NULL NULL NULL NULL

Output?
H SELECT a FROM foo WHERE (SELECT b FROM bar);

QUERY PLAN

Result
One-Time Filter:

Output!

H SELECT a FROM foo WHERE

QUERY PLAN

Result

One-Time Filter: (SubPlan 1)
-» Seqg Scan on foo
SubPlan 1

-» Materialize
-» Seqg Scan on bar

(SELECT b FROM bar);

Target Transformation

1. Characterize the query
2. Find analogues

3. ldentify transformations

Provably quals

SELECT a FROM foo WHERE (SELECT b FROM bar);

(SELECT b FROM bar)

SELECT a FROM foo WHERE 5

Target Transformation

1. Characterize the query
2. Find analogues

3. ldentify transformations

SELECT a FROM foo WHERE

QUERY PLAN

Result
One-Time Filter:

SELECT a FROM foo WHERE

QUERY PLAN

Result
One-Time Filter:

A Note on Notation

qual

OPEXPR"

arg2

Target Transformation

1. Characterize the query
2. Find analogues

3. ldentify transformations

SELECT a FROM foo WHERE NULL = 7;

qual

H SELECT a FROM foo WHERE (SELECT b FROM bar);

QUERY PLAN

Result
One-Time Filter:

planTree

resconstant
qual

SELECT a FROM foo WHERE "NULL = (SELECT b FROM bar);

S

planTree

qual @

resconstant
qual

S

®¢
)

SELECT a FROM foo WHERE NULL = ANY(SELECT b FROM bar);

@
@

qual
~
SEQSCAN > SEQSCAN
subselect testexpr

arg) argl

@

SELECT a FROM foo WHERE ..

NULL = 7 NULL = (SELECT b FROM bar) NULL = ANY(SELECT b FROM bar)

@ aml
OPEXPR"

qu‘.ll
OPEXPR" rig b Y

S - I
arg) arg?

subsele

Qgwl
ct te

L gl

Y

SELECT a FROM foo WHERE ..

NULL = 7

NULL = ANY(SELECT b FROM bar)
NULL = (SELECT b FROM bar)

qual

SELECT a FROM foo WHERE ..

SELECT b FROM bar
(SELECT b FROM bar) ()

Two . S

Constant Folding

SELECT a FROM foo WHERE (SELECT b FROM bar);

Current Pre-processed Query Tree

qual

@ OPEXPR"

co O D

qual

subselect testexpr

SELECT a FROM foo WHERE NULL = ANY(SELECT b FROM bar);

preprocess_expression(qual)

planTree

lefttree escqo‘?l‘a N Jefttre
SEQSCAN SEQSCAN
SUBPLAN
(bar) (foo)
subselect testexpr

S

SELECT a FROM foo WHERE NULL # SELECT a FROM foo WHERE NULLj
~ ANY(SELECT b FROM bar);

qual

S

(& B
@ planTree
subselect testexpr 5
qual
OPEXPR" ‘
resconstant
qual

argl arg2

w

S

This is semantically incorrect in one case

NULL Semantics

= ANY(SELECT b FROM bar)

Does any b in bar equal an ?

SELECT = ANY(SELECT b FROM bar);

Does any b in bar equal an ?

Does any b in bar equal an

SELECT = ANY(SELECT
b FROM bar);

column?

(1 row)

Does any b in bar equal an ?

TRUNCATE bar;

SELECT = ANY(SELECT # SELECT = ANY(SELECT
b FROM bar); b FROM bar);
°column? °column?
.F

(1 row) (1 row)

TRUNCATE bar;

SELECT a FROM foo # SELECT a FROM foo
WHERE = ANY(WHERE = ANY(
SELECT b FROM bar SELECT b FROM bar
)5)5
ad ad

(@ rows) (0 rows)

SELECT a FROM foo WHERE
SELECT NULL = ANY(SELECT b FROM bar); NULL = ANY(SELECT b FROM bar);

targetList q;Ja]

3 targetlList ciual

T $

SUBLINK expr subselect testexpr

o

testexpr

OPEXPR"

OPEXPR"

arg! arg2

argl arg?

~ALSE if baris an empty table and UL otherwise

targetlist
expr

SUBLINK

targetlList

eeeeeeee

OPEXPR"
OO

What could we do instead?

Two . s
Constant Folding gply in the gual

SELECT a FROM foo WHERE (SELECT b FROM bar);

SELECT a FROM foo WHERE (SELECT b FROM bar);

4— WS mmSS mSSS mSS mes meesm e sybquery planner()

preprocess_qual conditions()

if, after constant folding,
testexpr is a constant NULL,
replace SUBLINK with it

¥

e mmmm mmmm mmmm B preprocess_expression()

subselect testexpr

OPEXPR"

* e mmem mmmwm mmmwme mmmwmoeval _const_expressions()

argl arg2

oS

SELECT a FROM foo WHERE (SELECT b FROM bar);

Replace ANY SUBLINK when pre-processing quals

qual

subselect testexpr »

) qual
OPEXPR" ;
arg! arg2
PARAM ‘Ig!!:ll’
. J

SELECT a FROM foo WHERE (SELECT b FROM bar);

Patched Planning

qual

resconstant
qual

Patched Plan

H SELECT a FROM foo WHERE (SELECT b FROM bar);

QUERY PLAN

Result (rows=0)
One-Time Filter:

A very narrow case

Two . S

ANY Sublink Pullup

SELECT a FROM foo WHERE (SELECT b FROM bar);

H SELECT a FROM foo WHERE

QUERY PLAN

Hash Join
Hash Cond: (foo.a = bar.b)
-» Seq Scan on foo

-» Hash
-» HashAggregate
Group Key: bar.b

-» Seq Scan on bar

(SELECT b FROM bar);

SELECT a FROM foo WHERE a = ANY(SELECT b FROM bar);

Q convert ANY_sublink_to_join() /@\
Er | ‘»-ﬂﬂ“»~~ riabiele jo 2ree rumiei)
: ﬁ I are ored

= <
Q
|

ANY(SELECT b FROM bar); H NULL = ANY(SELECT b FROM bar);

. 2 = ANYV(SELECT b FROM bar); # . NULL = ANY(SELECT b FROM bar);

 ©
e
®
°

SELECT a FROM foo WHERE NULL = ANY(SELECT b FROM bar);

qual

subselect testexpr

oo
oo

SELECT a FROM foo WHERE NUI L # SELECT a FROM foo JOIN bar
~ ANY(SELECT b FROM bar); WHERE NULL = deduped(b);

qual

=

subselect testexpr

OPEXPR®

argl arg2

v

@

\ planTree
N\

Q{@

© O€
o
S

o
o
R

resconstant
qual

H SELECT a FROM foo WHERE (SELECT b FROM bar WHERE b = 5);

Current Patched
QUERY PLAN QUERY PLAN
Result Result
One-Time Filter: (hashed SubPlan 1) One-Time Filter:
-» Seq Scan on foo

SubPlan 1
-» Seq Scan on bar
Filter: (b = V)

H SELECT a FROM foo WHERE (SELECT b FROM bar);

Current Patched
QUERY PLAN QUERY PLAN
Result Nested Loop Semi Join
One-Time Filter: (hashed SubPlan 1) > Seq Scan on foo
-» Seq Scan on foo .
SubPlan 1 -» Materialize
-» Seq Scan on bar -» Seq Scan on bar

Filter: (/ = b)

Retes{2H)

Produces worse plans when the join isn’t eliminated
A very narrow case

HOEG

Guidelines for New Optimizations

Does it always retain semantic correctness?

Does it inhibit downstream optimizations?
s the improvement in execution time worth the cost in planning time?

s the complexity cost commensurate with the performance benefit?

Some Rejected . s

* Use stats
* Execute the subquery

When is it okay to ...?

* Do a catalog lookup

* Do partial execution
* Mutate the plan tree

* Save a reference to parent query

Discussion

Guidelines ... Others?

@ Does it always retain semantic correctness?

@ Does it inhibit downstream optimizations?

@ Is the improvement in execution time
worth the cost in planning time?

Is the complexity cost commensurate with
the performance benefit?

(Re)sources

* Uncommitted planner patches and discussion (browse old
commitfests) httos://comitfest.posteresal.org/

* Planner hacking presentations
* Tom Lane PGCon 2011 Hacking the Query Planner

N NS ¢ AWW ., DECON ., ONg e nedule/a achmen 3 Planne

e Robert Haas (CTRL-F ‘planner’)
https: it le.com/site/robertmh P ntations/2010-2012

* src/backend/optimizer/README

Q)

| K .',

https://commitfest.postgresql.org/
https://www.pgcon.org/2011/schedule/attachments/188_Planner%20talk.pdf
https://sites.google.com/site/robertmhaas/presentations/2010-2012

github.com/melanieplageman

l, /debugging planner Slides and Glossary
l, /postgres/tree Code
l, /const folding sublink wrong Constant Folding
l, /qual scoped const folding sublink Constant Folding only in the qual

l, /const ANY sublink pullup ANY Sublink Pullup

Acknowledgements

Jesse Zhang — Queries and content assistance
Kaiting Chen—TikZ diagram designer

