

How to get a feature committed?
Michael Paquier – VMware

2019/05/31, PGCon

About the man
● Michael Paquier.
● French, based in Tokyo.
● PostgreSQL contributor since 2009

– Some patches, some reviews and some bug fixes.
– Blogging.
– Committer since June 2018.

● Working at VMware on PostgreSQL
– Packaging.
– Integration.
– Support.

Community
● Core database engine
● Steady, well-designed progress
● World-wide investment
● Code of conduct (since 2018)

https://www.postgresql.org/about/policies/coc/

DB engine Ranking (May 2019)
● https://db-engines.com/en/ranking

Engine Score Apr 2018 May 2017

1 Oracle 1285.55 +5.61 -4.87

2 MySQL 1218.96 +3.82 -4.38

2 MSSQL 1072.19 +12.23 -13.66

4 Postgres 478.89 +0.17 +77.99

5 MongoDB 408.07 +6.10 +65.96

https://db-engines.com/en/ranking

PaaP
● PostgreSQL As A Product.
● (F)Orcs must die!

– If you like it, still you can fork it.
– Long-term prospect gets better by investing in the core engine.
– Some folks are still able to live with this model with customer base (EDB

Postgres, Amazon, Greenplum).

● Hard to contribute, initial time investment worth it long-term.
● Dozens of man years into the code from core developers.

Database engine
● ACID
● Free to use – BSD like
● Open engineering.
● Open to new and good ideas.
● Highly pluggable: data types, plugins.
● High code quality.

Committers
● World-wide, shared-something distribution
● 29 in total: https://wiki.postgresql.org/wiki/Committers
● North America (10) - US
● Europe (12) - Czech, France, Finland, Ireland, Russia,

Sweden, UK
● South America (1) - Chile
● Asia (4) - India, Japan
● Oceania (2) - NZ

https://wiki.postgresql.org/wiki/Committers

Development cycle
● Schedule decided at PGCon, developer meeting:

https://wiki.postgresql.org/wiki/PgCon_2019_Developer_Meeting

● 1 year, September to September, until GA
● Divided into two periods

– Feature submission and new developments
July~April

– Focus on stability April~September

https://wiki.postgresql.org/wiki/PgCon_2019_Developer_Meeting

Release maintenance
● One branch on git per major version

REL_11_STABLE => v11
REL_10_STABLE => v10
REL9_6_STABLE => v9.6

● Only bug fixes, no new features
● No change in system catalogs or WAL format
● EOL’d after 5 years

Commit fests
● 4~5 commit fests per development cycle.
● September to March.
● One month of break between each.
● Up to 250 patches.
● https://commitfest.postgresql.org/

https://commitfest.postgresql.org/

Stability period
● First beta after last commit fest, in April
● Stability work:

https://wiki.postgresql.org/wiki/PostgreSQL_12_Open_Items

● Help in stabilizing things
– Testing, actual fixes
– Show involvement with community
– As important as writing cool features

https://wiki.postgresql.org/wiki/PostgreSQL_12_Open_Items

Commit fest management
● Up to 250 patches.
● Few rejections.
● A lot returned with feedback.
● More patches bumped to next CF.
● Authors forget!
● Reviewers forget!

Add graph

Patch submission
● Read guidelines

https://wiki.postgresql.org/wiki/Submitting_a_Patch
● Register it in commit fest (need community account)
● If WIP, begin discussion first, draft patch fine.
● Email to pgsql-hackers.
● Bug fixes also to pgsql-bugs.

Patch contents
● The code itself
● Comments.
● Documentation!

– Explanation in email may not be enough, still helpful.
– Self-contained docs are for the user at the end.

● Tests:
– isolation, regression, TAP?
– Should be designed to not be too costly, still hold value.
– Helps in reviewing feature.

Coding convention
● Signal handling, macros, error format, etc.
● Configuration in src/tools/editors/: vi, emacs.
● Documentation:

https://www.postgresql.org/docs/devel/source.html

https://www.postgresql.org/docs/devel/source.html

Regression tests
● Main regression suite, src/test/regress/
● Isolation test (concurrency), src/test/isolation/
● Extension tests, src/test/modules/ and contrib/

https://www.postgresql.org/docs/devel/extend-pgxs.html

● TAP tests
– src/test/perl/ for base modules.
– src/test/recovery/, authentication/, ssl/, etc.

● PG_TEST_EXTRA='ssl ldap kerberos'

https://www.postgresql.org/docs/devel/extend-pgxs.html

Patch format
● Acceptable formats:

– git diff
– git format-patch

● Add version in the file name
● Sometimes make sense to split into multiple commits

– Refactoring first
– Actual feature

● Personal viewpoint: as long as it can be applied cleanly I am fine.
– patch -p1 < your-cool-stuff-v1.patch

CF manager
● Deputy handling patch workflow
● 1 or more seasoned contributors.
● Actions

– Tracking
– Poking
– Mostly poking and vacuuming

● Done by seasoned hackers.

CF bot
● Automatic check of submitted patches

– Linux
– Windows

● URL: http://commitfest.cputube.org/
● Divided by author:

http://commitfest.cputube.org/michael-paquier.html
● Credits: Thomas Munro

http://commitfest.cputube.org/
http://commitfest.cputube.org/michael-paquier.html

Patch review (1)
● Flow

– Exchange between author(s) and reviewer(s).
– Patch marked as ready for committer.
– Committer looks at it, committing it or falling back.

● 1 patch written = 1 review of equivalent
difficulty.

● Reviews are as important as writing cool code.

Patch review (2)
● Expect one or more rewrites of the patch.
● Make sure to agree on the shape before

consuming time writing it.
● Consensus is key.
● A complicated patch will never finish in the

shape it was designed initially.

Conclusion
● Be patient
● Help others, take new challenges.
● Fixing bugs and doing maintenance helps as

well.
● Remain polite, respect others.

Thanks!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

