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About us

M Haribabu Kommi

M Working for Fujitsu Australia Software
Technology

M 11+ years of experience in development of
database

* In memory, &
* Disk based

B Working in PostgreSQL ecosystem from
around 7+ years

* Contributions include reviews, bug-fixes,
feature development of core server

* and in various tools/drivers e.g. JDBC
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B Pankaj Kapoor
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ranging from applications to telecom

M Leading deliveries of Fujitsu Enterprise
Postgres (FEP) from Australia.

B Working in PostgreSQL ecosystem from
around ~3 years
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History of the development FUJITSU

B The seed was sown by Alvaro

M Columnar Storage was requested and fairly invasive patch was worked upon
around Aug-2016

W It was agreed that whole database can not be columnar based as it will serve
OLAP but will hit OLTP scenarios

M Fujitsu also wanted to contribute their columnar storage - Vertical
Clustered Index (VCI). To support the cause, Haribabu, from Fujitsu
Australia Software Technology participated in the development.

B Robert Haas suggested to work on rather generic and extensible
approach - pluggable table access methods; rather than just
focussing on storage layer

B \With huge efforts from Andres in terms of development, reviews,
fixes and guidance, Pluggable Table AM got committed in Mar 2019

3



People behind it FUJITSU

M Pluggable Table AM is a big feature and many people were involved
in completion of this feature. The list of people involved were:

W Andres Freund

M Haribabu Kommi

W Alvaro Herrera

W Alexander Korotkov
W Dimitri Dolgov

W Ashutosh Bapat

B Amit Khandekar

W David Rowley

M and others

B Draft Pluggable Table AM was being used by zHeap team, thereby
helping to identify needs apart from what Heap AM needs




What is pluggable table access method FUJITSU

M Till PostgreSQL 11, core maintains a pluggable access mechanism for Index to

choose different index implementation; however no similar mechanism was
available for Table

Existing PostgreSQL access mechanisms

btree

gin

Index Table

B The idea was to implement storage access mechanism (similar to index ) for Tables

as well to allow different tuple storage mechanisms. The same is been referred to
Pluggable table access methods henceforth.

Access methods I/F

B Pluggable table access methods exposes API, that facilitates any intendent

developer/team to generate specialised storage/access mechanisms of tuples for a
table.




What is pluggable table access method?

B Pluggable table access methods APl implementation also includes moving original

heap mechanism over pluggable access methods, which will be the default

available access method.

New PostgreSQL access mechanisms ( starting 12)

Index

Access methods I/F

btree

gin

gist

Table

* Work in progress or other possible implementation

B There are many organizations that are working on implementing their own tuple
storage types on top of pluggable access methods API, hopefully PG v13 will have

some ready for integration.
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Why not FDW FUJITSU

B FDW is intended to access foreign data and not for storing local data

W using this approach to access other storage types cannot yield best results and
will have its own limitation e.g. DDL support

B Couple of are columnar storage extensions that are available for
PostgreSQL using FDW

W cstore_fdw

W clickhousedb_fdw - ‘might’ be the right usage/hack, as it pushes/access data on
ClickhouseDB server. But question remains, do we need a different server to
store columnar data ?




What is supported in v12 FUJITSU

M User can create new TABLE type access methods

B TABLE access methods can be assigned to
M Tables, and

B Materialised Views

B Indexes and its access methods remains same. No changes have
been done for the same

B The supported APl is currently useful to create row based table
storages

M This however can be contended; and

W Doesn’t stop developers to hack it for columnar storage as well




New syntax support | User’s view FUTITSU
J

B CREATE ACCESS METHOD <new access method> TYPE TABLE
HANDLER <table_am handler>

B CREATE TABLE ... USING <new access method> ...
B CREATE TABLE ... USING <new access method> AS ...

B CREATE MATERIALIZED VIEW ... USING <new access method> ...




Overview of Table AM API | Developer’s view  rujitsu

B The following structure contains all the APIs that are necessary for any pluggable table
access method provider. The handler function must return the filled API structure.

/*

* APl struct for a table AM. Note this must be allocated in a

* server-lifetime manner, typically as a static const struct, which then gets
* returned by FormData_pg_am.amhandler.

%

* In most cases it's not appropriate to call the callbacks directly, use the

* table_* wrapper functions instead.

*

* GetTableAmRoutine() asserts that required callbacks are filled in, remember
* to update when adding a callback.

*/

typedef struct TableAmRoutine

{
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Overview (cont.) FUjITSU

B A total of 38 API’s are available in the TableAmRoutine structure,
except Bitmap and bulk insert API’s, rest are all mandatory to
develop a new table access method.

B There are 10 different categories of API that are present in the
TableAmRoutine that needs to supplied by the new access methods.

W Slot related callbacks —

* Callback is to provide the slot type that is used by the AM
M Table scan callbacks —

» Callbacks to perform scanning of a relation and provide the necessary tuples
W Parallel table scan callbacks —

* Callbacks to perform scanning of a relation using parallel workers to speed up the
relation scan.

M |[ndex scan callbacks —

* Callbacks to perform scanning of a relation from the index
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Overview (cont.) FUjITSU

B Non-modifying tuple callbacks —

* Callbacks to check the tuple, like tuple visibility and etc.
B Modifying tuple callbacks —

* Callbacks to modify the tuple, like insert, update and etc.
M DDL callbacks —

* Callbacks that handle the operations like setting the relfilenode, vacuum and etc.
B Misc callbacks —

* Callbacks to provide AM specific information like toast and etc.
M Planner callbacks —

* Callback to provide relation estimation size.
M Executor callbacks —

* Callback for bitmap and sample scan functionality.
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Possible implementation over pluggable table AM FUﬁTSU

B Using the pluggable table access methods, it is possible to implement
many different variety of table AM’s, such as:
M An alternative to heap (zHeap)
W Columnar table
¥ In-memory table
W Index organized table
M Etc.
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An alternative to heap - zHeap FUJITSU

M zHeap is already in progress with following objectives

M Provide better control over bloat using in-place updates and undo records for
delete

W Reduce write amplification as compared to heap

W Reduce tuple size by reducing tuple header
B \We expect zHeap to be available in community version by PG v13

B Currently supported pluggable table access methods meets basic
needs of zHeap (not all though)
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Columnar table FUjITSU

B The storage layout of the columnar table is column-wise instead of
row-wise.

M Fujitsu also has its own time-tested columnar table that support both
write and read query performance thereby achieving OLAP and OLTP
cases. In past it needed core level changes — however now getting
considered over Pluggable Table AM

B /edstore, which is under development based on pluggable table
access methods supports columnar table using btree index.

B \With pluggable Table AM, the implementations will be rather
focussed without bothering to change the core server
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In-memory table FUJITSU

B Main memory is used as primary storage tables. Rows in the table are
read from and written to memory. Some considerations:
M Copy of the table data is maintained on disk, only for durability

M Follow Only in memory table ( MongoDB has in-memory storage engine )

B in_memory is an extension in an enterprise version of postgres
implemented via FDW. Implementing it over Pluggable API will
reduce its codebase, let reap benefits of core and more

B Existing heap like mechanism, sans buffer-manager, will give an in-
memory table AM; but it may need some additional capability to
achieve syncing for persistence (if required).
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Index organized table FUJITSU

B |n index-organized table unlike ordinary (heap-organized) table
whose data is stored as an unordered collection (heap), data for an
index-organized table is stored in a B-tree index structure in a
primary key sorted manner. Each leaf block in the index structure
stores both the key and non-key columns.

B This is some what similar to INCLUDE column support in PostgreSQL,
but it eliminates the needs two place storage.

B Some quick implementation is possible by reusing zedstore columnar
implementation, by storing all columns as part of the index organized
by a primary key column.
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Further development FUJITSU

B New API to share targetlist columns from the table during the select
operation, so that the specified columns can only be returned

B ALTER table syntax enhancement to switch from one AM to another
B Adding cost functions to let the planner know more about Table AM

B Not exactly related to pluggable table AM, but following will open up
more avenues

M Executor batching

M Executor vectorization
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