

Odyssey

Advanced multi-threaded PostgreSQL connection pooler and request router

Andrey Borodin, software engineer

Andrey Borodin

› Contributing to Postgres since 2016

› Yekaterinburg database meetup organizer

▌ Working on

› disaster recovery system WAL-G

› connection pooler Odyssey

› interested in anything related to indexing

3

Yandex and PostgreSQL

▌ Yandex.Mail

› some hundreds of millions of users

› 1+ trillion rows, 1+ million requests per second
▌ Yandex.Cloud

› ~2Pb of Postgres (May 2019)

And many other services like taxi, maps, weather forecast, carsharing,
food delivery etc.

4

Cluster in the cloud

Sync replication Async replication

Backup

Network

Object

Storage

WAL
RW Queries

RO Queries

5

Node in a cluster

HA Control

Monitoring

Client Queries

Connection Pooler

6

Why should we pool
connections?

Why should we pool connections?

▌ 1 backend == 1 process

8

Why should we pool connections?

▌ 1 backend == 1 process
▌ Caches per backend

› Relations cache

› Compiled PL\pgSQL

› Plans

9

Why should we pool connections?

▌ 1 backend == 1 process

▌ Caches per backend

› Relations cache

› Compiled PL\pgSQL

› Plans
▌ HA node fencing

10

OLTP throughput

11

Application-side pool

Where can we pool connections?

1

Between app and DB2

DB built-in pooling4

Combinations7

Application-side connection pooler

13

App backend

Backend under load balancer

14

In multiple availability zones

15

DC1

DC2

Proxy poolers

▌ Pgpool II
▌ Crunchy-Proxy

› Diverse functionality beyond pooling

› Only session pooling

▌ PgBouncer

› Lightweight tool

› Transaction pooling

16

on our workload

▎PgBouncer FTW

we have a problem

Houston,

Diagnostics is complicated

miscdb01d/postgres M # SELECT client_addr, count(*)

FROM pg_stat_activity GROUP BY client_addr;

client_addr | count

-------------+-------

127.0.0.1 | 127

::1 | 136

(2 rows)

Time: 2.209 ms

miscdb01d/postgres M #
19

Diagnostics is complicated

Hard to trace

› Network problems

› Client driver problems

Hard to trace events of single session

20

application_name_add_host

miscdb01d/postgres M # SELECT client_addr, client_port, application_name

FROM pg_stat_activity LIMIT 1;

-[RECORD 1]----+--

client_addr | 127.0.0.1

client_port | 42051

application_name | app - [2a02:6b8:0:f12:225:90ff:fe94:155c]:50184

Time: 2.716 ms

miscdb01d/postgres M #
21

application_name_add_host

22

No way to limit connection count for specific database+user

max_client_pool_conn

key | value

-------------------+-------

max_client_conn | 20000

default_pool_size | 500

min_pool_size | 0

reserve_pool_size | 0

23

One client is opening max_client_conn connections and others will wait

max_client_pool_conn

2017-03-13 10:36:11.671 28152 LOG C-0x1350dd0:

(nodb)/(nouser)@[2a02:6b8:0:1a71::21a0]:55760 closing because: no more

connections allowed (max_client_conn) (age=0)

2017-03-13 10:36:11.671 28152 WARNING C-0x1350dd0:

(nodb)/(nouser)@[2a02:6b8:0:1a71::21a0]:55760 Pooler Error: no more

connections allowed (max_client_conn)

24

So, we patched PgBouncer

max_client_pool_conn

key | value

----------------------+-------

max_client_conn | 20000

max_client_pool_conn | 4000

default_pool_size | 500

min_pool_size | 0

reserve_pool_size | 0

25

We can limit user in PostgreSQL:

› ALTER ROLE XXX WITH CONNECTION LIMIT 200;

› ALTER ROLE YYY WITH CONNECTION LIMIT 10;

Pgbouncer cannot connect to server

26

Pgbouncer cannot connect to server

2017-03-13 10:48:23.995 24408 ERROR S: login failed: FATAL: too many connections for role
"YYY"

psycopg2.OperationalError: ERROR: pgbouncer cannot connect to server

>>> try:

... conn = psycopg2.connect("port=6432 ...")

... except psycopg2.Error as e:

... print(e.pgcode)

...

None

>>>

27

What’s going on?

29

▎We need more gold PgBouncers

PgBouncerPgBouncer

HAProxy

31

Client

PostgreSQLHAProxy PgBouncer

› Transparent for client

› Existing tools

› No client IP again

› One more moving part

› HAProxy does not speak proto3

› Problems with depleted

sockets

+ -

HAProxy

Pros Cons

https://lwn.net/Articles/542629/

SO_REUSEPORT

+ if (af != AF_UNIX && cf_listen_reuseport == 1) {

+ int val = 1;

+ errpos = "setsockopt";

+ res = setsockopt(sock, SOL_SOCKET, SO_REUSEPORT, &val, sizeof(val));

+ if (res < 0)

+ goto failed;

+ }

33

https://lwn.net/Articles/542629/

SO_REUSEPORT

34

PgBouncerPgBouncerClients PostgreSQLPgBouncer

› Transparent for clients

› No extra moving parts

› Fragmentation of idle connections among PgBouncers

SO_REUSEPORT

35

TLS

36

TLS

$ pgbench -C -T 30 -j 300 -c 300 -S
postgresql://127.0.0.1:6432/pgbench?sslmode=disable

<…>
latency average: 26.101 ms
tps = 11484.521542 (including connections establishing)

$ pgbench -C -T 30 -j 300 -c 300 -S
postgresql://127.0.0.1:6432/pgbench?sslmode=require

<…>
latency average: 523.895 ms
tps = 566.809760 (including connections establishing)

37

TLS

38

When the node is opened – connections startups are coordinated

› TLS hadshake explosion

Some clients have small connect_timeout

› Clients retry, pgbouncer burns CPU

TLS

39

TLS

40

PgBouncerPgBouncerPgBouncerPgBouncerPgBouncerPgBouncerPgBouncerPgBouncerPgBouncer PgBouncer

Cascading PgBouncers

41

Client

PostgreSQLPgBouncer :6432 PgBouncer :7432

TLS

› Still transparent for client

› Withstand any load peak

› Control over idle connection count

› Smooth restart

› Maintenance is difficult

› No control over distribution of load by instances of PgBouncers

Cascading PgBouncers

42

Looks OK.
How to open source this?

Client of healthy user

› Opens new connection w\o auth

› Call PQcancel, with secret token from backend

› postgresql.org/docs/current/static/libpq-cancel.html

Smoker’s client

› Just send TCP reset

github.com/pgbouncer/pgbouncer/pull/79

Cancel running query

44

https://www.postgresql.org/docs/current/static/libpq-cancel.html
https://github.com/pgbouncer/pgbouncer/pull/79

› Controllable CPU scaling

› Flexible tuning

› Tracing client session

› Mixed pooling types

› Better error codes forwarding

What do we want?

45

Odyssey

› Linux x86, x86_64

› С99

› cmake, gcc/clang

› Depends only on openssl

› One config file

./odyssey <config_file>

Compilation

47

Internal architecture

48

system

router servers

console cron

coroutine

thread

main()

coroutine

worker pool

worker

accept()

client

attach/detach
server

thread

49

Multithreading

› Machinarium: workers and coroutines

› Independent epoll(7) context for each
worker

› Accept(2) in separate thread

› Pipelining small packets

› Cache-friendly pipelining

› Optimization for special case workers = 1

Multithreading details

50

› Enhanced transaction pooling
CANCEL queries that no one waits

Odyssey features

51

› Trying to keep server connection

› Automatic ROLLBACK

› Automatic CANCEL

› Optimization of parameter setup (SET, DISCARD)

Enhanced transaction pooling

52

› Replication support
Clients can migrate FROM your cloud managed services

Odyssey features

53

› PgBouncer console compatibility
Does your monitoring look into ‘SHOW SERVERS’?

Odyssey features

54

› Error forwarding
Easier to handle overload

Odyssey features

55

client_fwd_error off

$ psql "dbname=test host=localhost port=6432"

psql: ERROR: odyssey: c9259d96414b9: failed to connect to

remote server sce469f2305d9

client_fwd_error on

$ psql "dbname=test host=localhost port=6432"

psql: FATAL: odyssey: cbde3e23d9aa2: database "test"

does not exist

Logging and error forwarding

56

log_format "%p %t %l [%i %s] (%c) %m \n"

4249 17 Jun 17:32:27.604 info [cbde3e23d9aa2 none] (startup) new client connection [::1]:50676

4249 17 Jun 17:32:27.604 info [cbde3e23d9aa2 none] (startup) route 'test.pmwkaa' to 'default.default'

4249 17 Jun 17:32:27.604 info [cbde3e23d9aa2 sa6a53e6ec6d7] (setup) new server connection

127.0.0.1:5432

4249 17 Jun 17:32:27.607 error [cbde3e23d9aa2 sa6a53e6ec6d7] (startup) FATAL 3D000 database "test"

does not exist

Logging and error forwarding

57

client_fwd_error off

$ psql "dbname=test host=localhost port=6432"

psql: ERROR: odyssey: c9259d96414b9: failed to connect to

remote server sce469f2305d9

client_fwd_error on

$ psql "dbname=test host=localhost port=6432"

psql: FATAL: odyssey: cbde3e23d9aa2: database "test"

does not exist

Logging and error forwarding

58

storage "postgres_server" {

type "remote"

host "127.0.0.1"

port 5432

tls "disable"

}

Route settings

59

database "test" {

user "test" {

storage "postgres_server"

authentication "none"

client_max 100
pool "transaction"

pool_size 10
pool_cancel yes
pool_rollback yes

}

user default {
authentication "block"

}

}

Route settings

60

database default {

user default {
authentication "block"

}

}

Route settings

61

pgbench

*Benchmark results depend on software, hardware and weather on the moon. Do not trust them.

**We optimized scaling, not throughput. 62

37 105

58 391

95 023

149 622

23 296

46 711

73 269

117 616

0

40000

80000

120000

160000

1 worker 2 workers 4 workers 8 workers

Odyssey RPS PgBouncer RPS

› PostgreSQL make install-check

› Drivers tests: pq, node-postgres, pgjdbc, psycopg2

› Unit-tests

How we test

63

› make install-check -> Odyssey -> PostgreSQL

› make install-check -> PgBouncer -> Odyssey -> PostgreSQL

How we test

64

› SCRAM authentication

› Forward read-only queries to replica

› Online restart

› Pause server

› …

› Pull requests are welcome!

Roadmap

65

x4mmm@yandex-team.ru

Andrey Borodin

Waiting for questions J

x4mmm

