4

Tell MD5 to SCRAM!

JONATHAN S. KATZ
MAY 30, 2019

@crunchydota

- O
T >@/ 000 H HIE
& fe— [0000] flofollo P

A Brief History of

PostgreSQL Password Management

¥

@, crunchydata

'Before PostgreSQL 10: "password"

« Stored the password as plaintext in the database
* Which is fine if you:
« Only authenticate with the password over encrypted connections
 Trust your database superusers
* Trust your system superusers
* Never use your database password anywhere else. Ever.

* There were reason to use this method, e.g. your PostgreSQL connection
driver did not support the MD5 method.

* This reason is no longer valid.

3 crunchydotc

'Before PostgreSQL 10: MD5

“password”

“jkatz”

» Stored the password as a salted MD5 hash, where the salt is the username

* Prepends "md5" so PostgreSQL knows that it is a MD5 stored password

@crunchy data

Client

'Before PostgreSQL 10: MD5 @

| want to connect

md53a6d9990d2fd042¢c31bc59139b819¢93

S4LT

_

* When authentication with the MD5 method, PostgreSQL sends over a
random salt and asks the client to send a MD5 hash over with the md5

hashed password and the salt

@crunchy data

'MDS: Of Course It's Safe!

CREATE ROLE jkatz;
ALTER ROLE jkatz WITH LOGIN PASSWORD 'md53a6d9990d2fd042c31bc591390819¢c93"';

- It is provably very difficult to gain access to one's MD5 hash, even by

accident.
- And even more challenging to authenticate with it.

crunchydotc

D @7 s
ST © i
@ L [(oooo] EEE P

@ [

MD5 Needs to SCRAM

XY

@, crunchydata

'SCRAM? That Seems Rude...

 "Salted Challenge Response Authentication Method"
* |t's a standard! RFC5802

 Defines a method for a client and server to authenticate without ever
sharing the password

* Also allows client + server to validate each others i

<DIGEST>S<ITERATIONS>:<SALT>S<STORED KEY>:<SERVER KEY>

8 cru nchydata

'Authentication the SCRAM Way

Client

‘ SCRAM_DIGEST i

ch_bind jkatz CLIENT_NONCE

o €) crunchydata

'Authentication the SCRAM Way

Client

CLIENT_NONCE +
SERVER_NONCE

SALT ITERATIONS

CLIENT_NONCE + CLIENT KEY XOR

°h-bind | SERVER NONCE | CLIENT SIGNATURE €\ crunchydata

10

W Authentication the SCRAM Way
Client

SERVER_SIGNATURE

) €) crunchydata

'Upgrading to SCRAM

12

* In postgresqgl.conf set password encryption to scram-sha-256

« Keep md5 as your authentication method in pg_hba.conf until all your

users have re-hashed their passwords

« ...have your users re-hash their passwords. Best way is \password

* Once all of your users have re-hashed their password, switch your
authentication method to scram-sha-256

crunchydotc

'But wait there's more!

* Channel binding, introduced in PostgreSQL 11, allows SCRAM to use
elements of TLS to

* Ensure the SSL handshake is still the same when verifying identities

* Prevents man-in-the-middle attacks!

13 crunchydotc

Wow, did | do that in five minutes?

Jonathan S. Katz
@jkatz05

@

crunchydata

