
Tell MD5 to SCRAM!

JONATHAN S. KATZ

MAY 30, 2019

A Brief History of
PostgreSQL Password Management

• Stored the password as plaintext in the database

• Which is fine if you:

• Only authenticate with the password over encrypted connections

• Trust your database superusers

• Trust your system superusers

• Never use your database password anywhere else. Ever.

• There were reason to use this method, e.g. your PostgreSQL connection
driver did not support the MD5 method.

• This reason is no longer valid.

Before PostgreSQL 10: "password"

�3

• Stored the password as a salted MD5 hash, where the salt is the username

• Prepends "md5" so PostgreSQL knows that it is a MD5 stored password

Before PostgreSQL 10: MD5

�4

md53a6d9990d2fd042c31bc59139b819c93“password” “jkatz” “md5”

• When authentication with the MD5 method, PostgreSQL sends over a
random salt and asks the client to send a MD5 hash over with the md5
hashed password and the salt

Before PostgreSQL 10: MD5

�5

I want to connect OK, here is a random salt: “S4LT” - send me
your MD5 hashed password

md53a6d9990d2fd042c31bc59139b819c93 S4LT “md5” md5c3b4067c20d9097b4091ab263f98dbda

“OK, cool, it’s you! Have fun.”

Client

MD5: Of Course It's Safe!

�6

$ pg_dumpall

--
-- Roles
--

CREATE ROLE jkatz;
ALTER ROLE jkatz WITH LOGIN PASSWORD 'md53a6d9990d2fd042c31bc59139b819c93';

• It is provably very difficult to gain access to one's MD5 hash, even by
accident.

• And even more challenging to authenticate with it.

MD5 Needs to SCRAM

• "Salted Challenge Response Authentication Method"

• It's a standard! RFC5802

• Defines a method for a client and server to authenticate without ever
sharing the password

• Also allows client + server to validate each others i

SCRAM? That Seems Rude...

�8

<DIGEST>$<ITERATIONS>:<SALT>$<STORED_KEY>:<SERVER_KEY>

Authentication the SCRAM Way

�9

Client

I want to connect

CLIENT_NONCEjkatzch_bind

OK, here is my initial response

OK, but you gotta SCRAM

SCRAM_DIGEST

Authentication the SCRAM Way

�10

Client

CLIENT_NONCE +
SERVER_NONCE SALT ITERATIONS

Oh yeah? Well, I’m going to send you some stuff to
see if we can both come to the same conclusion

about the passwordAlright, so it looks like you append to my nonce. Cool. I’m
going to generate a PROOF for you to validate that I know the

PASSWORD.

I will take the plaintext PASSWORD that I think is correct,
initializing with SALT, and then apply HMAC using

SCRAM_DIGEST for ITERATIONS which gives me a
SALTED_PASSWORD

To finish the proof, I will derive the STORED_KEY, which is the
SCRAM_DIGEST of the HMAC of SALTED_PASSWORD with

“Client Key”.

I build a CLIENT_SIGNATURE which is the HMAC using
STORED_KEY and information about this session

CLIENT_KEY XOR
CLIENT_SIGNATURE

CLIENT_NONCE +
SERVER_NONCEch_bind

Authentication the SCRAM Way

�11

Client

Oh you think you’re so clever?

I can compute CLIENT_SIGNATURE because I
have the STORED_KEY and the session

information.

I’ll XOR that with the proof and get the
CLIENT_KEY.

If your CLIENT_KEY is valid, its SCRAM_DIGEST
and it will be the same as STORED_KEY.

So you can trust me, I’ll send you a
SERVER_SIGNATURE which is the HMAC with
SERVER_KEY and the session information

SERVER_SIGNATURE

OK, I can create SERVER_SIGNATURE as I can derive the
SERVER_KEY using a HMAC with SALTED_PASSWORD with

“Server Key” and then see if I can match
SERVER_SIGNATURE.

If it does, I trust that you authenticated me, and we can move
forward.

• In postgresql.conf set password_encryption to scram-sha-256

• Keep md5 as your authentication method in pg_hba.conf until all your
users have re-hashed their passwords

• ...have your users re-hash their passwords. Best way is \password

• Once all of your users have re-hashed their password, switch your
authentication method to scram-sha-256

Upgrading to SCRAM

�12

• Channel binding, introduced in PostgreSQL 11, allows SCRAM to use
elements of TLS to

• Ensure the SSL handshake is still the same when verifying identities

• Prevents man-in-the-middle attacks!

But wait there's more!

�13

Jonathan S. Katz
@jkatz05

Wow, did I do that in five minutes?

