An architectural
perspective

PGCon 2019 — May 30, 2019

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Geoghegan

@petervgeoghegan

https://speakerdeck.com/peterg/nbtree-arch-pgcon

My perspective

» Good mental model important for working on the
nbtree code.

- Perhaps this talk will make that easier.

= Must approximate reality, while leaving out
inessential details that hinder understanding.

= PostgreSQL 12 work will be discussed along the
way.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Overview

1. Big picture with B-Trees

What's the point of this “high key” business, anyway”?

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Big picture with B-Trees

» Page splits add new pages.

» Recursive growth — page splits occur in leaf pages
that fill with tuples pointing to table, and cascade
upwards to maintain tree.

= Actually bush-like — very short, and very, very wide.

- New levels added to tree at logarithmic intervals,
during root page split.

» Just a few localized atomic operations that affect only a
few pages at a time used for everything.

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

The key space

= Every page “owns” a range of values in the key
space/key domain.

- Starts out with a single root page (also a leatf), that
owns the range “-«” through to “+oo”

- Splitting rightmost leaf page creates new leaf page
that owns a range starting just after the final tuple in
new left halt, through to the sentinel “+oo”.

= We always have one particular page that any possible
new tuple should go on (at least on Postgres 12).

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Protecting tree structure

» | ocks used to protect physical structure as tree grows.
- Must prevent the tree structure from becoming
inconsistent (e.g., in a state that causes an index
scan to skip over relevant data).
- Various schemes used over past 40+ years.
= nbtree uses Lehman & Yao algorithm.

- Have right sibling pointer and high key.

- Sometimes called “B-Link Trees”.

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Figure 3. A B-link tree page split
B KPR | Kk %nigh| Binkt—> ...

2
2 R

(a) Example B-link tree node

n-1 keys
n pointers

2R R .

d+1 d+l
pointers pointers

/ n-1 keys
n pointers

(b) Before half-split

d+1 keys d keys

/) | "’Ksplit __,lj e e . | 5

—— e~ —

d+2 d+1

pointers pointers
(c) After half-split
n keys
n+1 pointers
3 —
)4 nglit |
d+1 keys d keys
/ I eee %plit __4[¢« & a 4 r.._)
/ \ {———v 4 J\ N~

d+2 d+1

pointers pointers

(d) After key propagation

Pictured: Diagram from
“Performance of B+Tree Concurrency Control

Algorithms®

by V. Srinivasan and Michael J. Carey

Moving right to recover

B-Link trees (Lehman and Yao B-Trees) take an

optimistic approach, in contrast with earlier, pessimistic
designs.

= Concurrent page splits might confuse searches that
descend tree — can be dealt with a few ways.

= Earlier approaches involved “coupling” locks,
preventing concurrent page splits altogether.

= | ehman and Yao's algorithm detects and recovers
from concurrent splits instead.

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Recovering from a concurrent
page split

= Lehman and Yao divide complicated page split into
two simpler atomic steps.

- Initial step creates new right sibling, and shares
tuples amongst original (left) page and new right

page.
- Second step inserts new downlink for right page.

= Meanwhile, scans must check high key after
descending on to a page — verifies that this is still
the page covering the value of interest.

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Overview

2. Seeing the forest for the trees

Reasoning about nbtree invariants when designing enhancements.

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

z|CharIie ! || Golf Mike Papa
[ilo [Lima [mike [Mike

0o || J

Papa

+00

» || November

Oscar

Papa

https://speakerdeck.com/peterg/nbtree-arch-pgcon

> Il_ooll

! || Tango

Quebec

Romeo

Sierra

Tangl

€) crunchydata

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Seeing the forest for the trees

Lehman and Yao paper not a particularly good guide to nbtree.

= nbtree is concerned with distinctions that L&Y either ignore
or couldn’t possibly anticipate.

- Variable-sized keys.
- Page model, IndexTuple struct format.

= Few true special cases, despite appearances to the
contrary.

= Problem made worse by generally odd approach L&Y take.

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

“The locking model used in [LY81] assumed that an
entire node could be read or written in one
indivisible operation

Since the atomicity of node reads and writes is not
a reasonable assumption in some environments
(such as when the structure is in primary
memory), and in order to make comparisons to
other algorithms easier, we use a more general
locking scheme similar to the one in [BS77]

— Lanin & Sasha paper (LS86)

lemphasis added], from “2.2 Locks”

Terminology

Terminology makes things harder — equivalent but not identical
representation lets nbtree use IndexTuple struct for everything.
This is convenient for low-level page code, but can make high-
level discussions confusing.

= Pivot tuples.

- Contain separator keys and/or downlinks — guide scans.

- Usually have both together, sometimes just separator (high
key), other times just a downlink (“-co” tuple).

= Non-pivot tuples.

- Only on leaf level, cannot be truncated, always point to
table.

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Invariants

Carefully considering how to satisty invariants can simplify
the design of nbtree enhancements.

= Relationship between separator keys and real keys can
be fairly loose.

- Values in same domain as entries, but it's okay if they
don’t actually match any real entry (non-pivot key).

- Separators are a good target for prefix compression
(a generic optimization) — there is seldom any need to
decompress, and a good whole-page prefix is already
available.

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Invariants (cont.)

Good B-Tree designs not only anticipate future work — they
simplify it as a concomitant advantage.

= Subtrees can be isolated and reasoned about as
iIndependent units.

- All subtrees own discrete range in the key space.

- Page deletion relies on this to isolate subtree undergoing
deletion (multi-level deletion).

- Prefix compression of leaf page items would probably work
pased on similar principles — if only because compression
pased on current keys might break page deletion.

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Overview

3. A place for everything, and everything in its place

How reliably unique keys simplity many things.

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

A place for everything, and
everything in its place
= Uniqueness required by Lehman and Yao.

= nbtree treats heap TID as tiebreaker column in
v12. L&Y’s requirement now met, finally.

= [IDs are reliably unigue, so now keys are
themselves unigue.

- Needed for “retail index tuple deletion”.

- Surprisingly helpful in other ways.

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Heap TID as a tiebreaker

= For the most part, "heap TID column” is not
special, at least internally.

= [nserts must specity heap TID.

= "Retall index tuple deletion” would have to work
N the same way, since it's necessary to
unambiguously identity the same tuple when
there are (logical) duplicates.

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

The false economy of “getting
tired” when inserting duplicates

= Old approach had insertion place a duplicate anywhere it
wanted to among leaf pages that have ever had duplicates.

- Go through pages that store duplicates on the leaf level until
some free space is located...

- ...or until we “get tired” — implementation unable to spend
too long locating theoretically available free space.

- Getting tired occurs at random — give up and split page.

= |nsertion won't “get tired” with Postgres 12 indexes, which can
make affected indexes ~16% smaller in simple cases.

= Gitlab may have been affected [1].

[1] https://about.gitlab.com/handbook/engineering/infrastructure/blueprint/201901-postgres-bloat/
https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Realistic small Postgres 12
iIndex (root page + 3 leaf pages)

o[1 [367, =o' [[7 |[733, =o' |[7][+c0

1,'0,1)'|[2, (0,2)'] ... [3686, '(5,61)'|| 367, '-=' 367, '(6,1)"'|| 368, '(6,2)'| ... | 732, '(11,61)" || 733, - 733, '(12,1)’ 734,'12,2)' | ... | 4o

366 non-pivot items & high key 366 non-pivot items & high key 2+ non-pivot items, implicit +o0 high key

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

12 . R. Bayer and K. Unteraver

Bigbird, Burt, Cookiemonster, Ernie, Snuffleopogus

In order to insert the key “Grouch” with its record, we must split this leaf into
two as follows:

Bigbird, Burt, Cookiemonster Ernme, Grouch, Snuffleopogus

Instead of storing the key “Ernie’” in the index, 1t obviously suffices to use one of
the one-letter strings “D”, “E” for the same purpose. In general we can select

any string s with the property
Cookiemonster < s < Ernie (1)

and store it in the index part to separate the two nodes. We call such a string s
a separator (between Cookiemonster and Ernie). It seems prudent to choose one

of the shortest separators.

Pictured: Diagram from “Prefix B-Trees” by Bayer and Unterauer, 1977

Classic suffix truncation applied
to earlier example

S HEHE

O

| Il el v |le

|E| - > |De|ta"Echo"Foxtrot"Gl - > | llllll "Kllo"lea"Mlke" |

e/

EHURNEE

https://speakerdeck.com/peterg/nbtree-arch-pgcon

eeeeeeee " Oscar " | | Quebec " Romeo " Sierra " TN Uniform " Victor " XRm Yankee " Zulu " +00 |

€) crunchydata

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Classic suffix truncation applied
to earlier example

| Lol * e N[I I [l

7 kK

- <k
|E| — » |[Detta][Echo|[Foxtrot][G]| — » [[sutiet][Kilo|[Lima][mike][N]| — » [[November |[oscar [P]| — »*fuebec][Rrom ra||TmUniform||Victor||xmwankee||2ulu||+oo|

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Choosing a split point

Leaf page splits primarily about equalizing free space on
each side, to meet future needs.

= Also only place where new separator keys are made.

- New high key for left page becomes separator
before new downlink in parent for right page.

- Internal page splits only use copies (truncating an
already-truncated key would be wrong).

= Suffix truncation occurs when new separator created by
leaf split.

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Choosing a split point (cont.)

Algorithm can give some weight to suffix truncation,
while continuing to make space utilization the first

priority.

= Even very small adjustments can help suffix
truncation a lot.

= Algorithm won't accept a fotally lopsided split to
make suffix truncation more eftective.

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

a split point anywhere between the short arrows is acceptable, a single
letter suffices. A single comparison of the two keys defining the range
of acceptable split points can determine the shortest possible separa-
tor key. For example, in Figure 3.6, a comparison between “Johnson,
Lucy” and “Smith, Eric” shows their first difference in the first letter,
indicating that a separator key with a single letter suffices. Any letter

Johnson, Kim
—,> Johnson, Lucy
Johnson, Mitch
Miller, Aaron
—— > Miller, Bertram
Miller, Cyril
Miller, Doris
——> Smith, Eric
Smith, Frank

Fig. 3.6 Finding a separator key during a leaf split.

Pictured: Diagram from “Modern B-Tree Techniques” by Goetz Graefe — Prefix B-Trees chapter

Choosing a split point (cont.)

Algorithm in Postgres 12 takes a holistic view of the problem.

» May make slight adjustment with simple, common cases (e.qg.
pgbench indexes).

» But sometimes radically ditterent to previous approach!

- Behavior with duplicates is important with heap TID as a
tiebreaker column.

- A 50:50 page split is essentially a guess, and not necessarily
a good one.

- A 90:10 page split (rightmost split) is well known case where
split point is based on inferring insertion patterns.

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

TPC-C indexes and “split after
new tuple” optimization

Insertion pattern is very often not random

= Successive splits over short period of time that
affect same area are very common.

= Multi-column indexes may have auto-incrementing
identifiers grouped by an order number or similar.

= [ndustry standard TPC-C benchmark has lots of

this. All iIndexes taken together are ~40% smaller
with Postgres 12.

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

1.2 D atabase Entities, Relationships, and Characteristics

1.2.1 The components of the TPC-C database are defined to consist of nine separate and individual tables.
The relationships among these tables are defined in the entity-relationship diagram shown below and are subject to

the rules specified in Clause 1.4.

Warehouse\ 10 > District
w / W*10
History
100k W*3 Ok+
1+
Stock Custome
W*100k eW-Order W*3 0k

¢ 3+ W*Ok+ \ ¢ 1+
ltem Orderdline Oder
100k W*300k+ 5. 15 W*3 0k+

TPC-C’s order system is more or less a circular buffer, or queue

https://github.com/petergeoghegan/benchmarksdl

Pictured: Diagram from TPC-C spec, Revision 5.11

https://github.com/petergeoghegan/benchmarksql

“Split after new tuple” example

Order numbers: 1, 2
Line items: 1,2, 3...

Initial state: one page, already 100% full

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

1,1 1213

2,1

50:50 page splits:

11 1,2 || ||
131 1,4 || ||
1,5 1,6] 2,1 |

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Insert 4, 5, 6...

Optimized page splits:

1,1 || 12 1 1,3 || 1,4
15| 1,6 ||
21 | |

€) crunchydata

https://speakerdeck.com/peterg/nbtree-arch-pgcon

(Last slide’s state)

50:50 page splits:

1,1] 1,2 |
1,3] 1,4 |
16] 16|
1,71 1,8] 1,9 | 2,1

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Insert 7, 8, 9. ..

Optimized page splits:

1,1] 1,213 14
1,5 16| 1,7 | 1,8
19 | |
2,1 | |

€) crunchydata

https://speakerdeck.com/peterg/nbtree-arch-pgcon

(Last slide’s state)

50:50 page splits:

1,1] 1,2
1,3] 1,4 |
16] 16|
17118]
1,9 | 1,10 |

1,11 || 1,12|| 2.1

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Insert 10,11,12. ..

Optimized page splits:

1,1] 1,213 14
1,5 16| 1,7 | 1,8
1,9 | 1,10 | 1,11] 1,12
2,1 | |

€) crunchydata

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Overview

4. Future work

Outlook for future improvements.

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Future work

» Key normalization [1] — make separator keys
into conditioned binary string that is simply
stremp()’d during index scans, regardless of
‘tuple shape”.

- Prefix compression.
- “Classic” suffix truncation.

= GO even further — “abbreviated keys” in internal
pages”?

[1] https://wiki.postgresqgl.org/wiki/Key normalization

1 =

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon
https://wiki.postgresql.org/wiki/Key_normalization

CPU cache misses

= Binary searches incur cache misses during descent
of tree — these can be minimized.

- Abbreviated keys in line pointer array.
= [hese optimizations can be natural adjuncts.

- Lehman & Yao don'’t care about how values are
represented on the page.

- “Modern B-Tree techniques” survey paper is a
great reference.

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Index tuple header with offsets

May need to accommodate table access methods
with row identifiers that are not at all like TIDs.

» [uple header offset makes it easy for that to be

accessed quickly, but also accessed as just
another attribute.

= SKip scans.

= [Dynamic] prefix truncation.

https://speakerdeck.com/peterg/nbtree-arch-pgcon @ cru nchy data

https://speakerdeck.com/peterg/nbtree-arch-pgcon

Conclusions

= |t pays to consult multiple sources when working
on nbtree codebase.

- If only to contfirm your original understanding.

- Terminology causes problems — sometimes
subtle distinctions matter a lot.

= Visualizing real indexes using tools like contrib/
pageinspect can be very helpful.

https://speakerdeck.com/peterg/nbtree-arch-pgcon

https://speakerdeck.com/peterg/nbtree-arch-pgcon

hitps://speakerdeck.com/peterg/nbtree-arch-pgcon

