A"

Innova tive R&D by NTT

Introducing PMDK into PostgreSQL

Challenges and implementations towards PMEM-generation
elephant

Takashi Menjot, Yoshimi Ichiyanagi®
TNTT Software Innovation Center

PGCon 2018, Day 1 (May 31, 2018)

Copyright©2018 NTT Corp. All Rights Reserved.

My background
=

* Worked on system software
 Distributed block storage (Sheepdog)
« Operating system (Linux)

* First time to dive into PostgreSQL

* Try to refine open-source software by a new storage and a
new library

 Choose PostgreSQL because the NTT group promotes it

Any discussions and comments are welcome :-)

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 2

Overview of my talk

1. Introduction
* Persistent Memory (PMEM), DAX for files, and PMDK

2. Hacks and evaluation
I. XLOG segment file (Write-Ahead Logging)
li. Relation segment file (Table, Index, ...)

3. Tips related to PMEM
 Programming, benchmark, and operation

4. Conclusion

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 3

Overview of my talk —

1. Introduction
« Persistent Memory (PMEM), DAX for files, and PMDK

2. Hacks and evaluation
I. XLOG segment file (Write-Ahead Logging)
li. Relation segment file (Table, Index, ...)

3. Tips related to PMEM
 Programming, benchmark, and operation

4. Conclusion

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 4

Persistent Memory (PMEM)

*Emerging memory-like storage device
* Non-volatile, byte-addressable, and as fast as DRAM

* Several types released or announced

* NVDIMM-N (Micron, HPE, Dell, ...) <« We use this.
« Based on DRAM and NAND flash

« HPE Scalable Persistent Memory
* Intel Persistent Memory (in 20187?)

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 5

—

How PMEM is fast s

Read/write latency of each device

|
! I 2
l & © & O
, & @ & Q(\ Q{\ Q{\ & @ ! (f/o
BN O™ \D NS " |
o e vy YYD .
I
' DRAM . PCM ReRAM STT-MRAM ;i SSD HDD
Y
: PMEM !

m Read (lhs) mWrite (rhs)

[Source: J. Arulraj and A. Pavlo. How to Build a Non-Volatile Memory Database Management System (Table 1). Proc. SIGMOD '17.]
@ NT Copyright©2018 NTT Corp. All Rights Reserved. 6

Databases on the way to PMEM —

Easiar T tion P ; ith PI\/IEI\/I{% SSSTEN‘TLTZT?FY' Leveraging 3D XPoint™ PM technology for §g‘ﬁﬁ“fﬁfﬁf‘]‘
aster lransaction Frocessing wi e Ao SAP HANA Main Store: Solution Overview O it T e

! NVDIMM-N (Byte)
> Copy log records into buffer, building up block + Primary data store is data
> Close log block once commit arrives 2 I) volume (in SAN or local
> Schedule I/O to persist block on SSD L storage)
> Complete transaction wl hen /O completes 3 « Main is in 3D XPoint™ PM
instead of DRAM and is now
Wit T of Lo TR persitent

« On Restart: Main already in
3D XPoint™ PM, no need to

Microsoft SQL Server 2016 SAP HANA iIs leveraging
utilizes NVDIMM-N for Tail-of-Log [1] PMEM for Main Store [2]

Fundamental idea for NVM Logging

Transaction
processing

Memory |

Volatile #

»»»»»

J4Intel Persistent Memo

Non-volatile

Storage . .
.= _.JNon-volatile

MariaDB Labs is “Non-volatile Memory Logging”
collaborating with Intel [3] in PGCon 2016 [4]

[1] https:/lwww.snia.org/sites/default/files/PM-Summit/2017/presentations/Tom_Talpey_Persistent_Memory_in_Windows_Server_2016.pdf
[2] https://lwww.snia.org/sites/default/files/PM-Summit/2017/presentations/Zora_Caklovic_Bringing_Persistent_Memory_Technology _to_SAP_HANA.pdf
[3] https://mariadb.com/about-us/newsroom/press-releases/mariadb-launches-innovation-labs-explore-and-conquer-new-frontiers

@ [4] https:/lwww.pgcon.org/2016/schedule/attachments/430_Non-volatile_Memory_Logging.pdf

NTT Copyright©2018 NTT Corp. All Rights Reserved.

2

What we need to use PMEM

« Hardware support
* BIOS detecting and configuring PMEM
« ACPI 6.0 or later: NFIT
 Asynchronous DRAM Refresh (ADR)

} For NVDIMM, at least.

e Software support
« Operating system (device drivers)

* Direct-Access for files (DAX)
* Linux (ext4 and xfs) and Windows (NTFS)

* Persistent Memory Development Kit (PMDK)
 Linux and Windows, on x64

@ NTT Copyright©2018 NTT Corp. All Rights Reserved. 8

DAX, PMDK, and what we did

PostgreSQL@PostgreSQL PostgreSQL

Library
(PMDK)
Context | File /0O Context | File /O No context] Load/Store
User switch APIs switch _| APIs switch instructions
___________________________ <: q
Kernel piaiieinly pleble bl
Traditional DAX-enabled Memory- |
. . . |
filesystem filesystem mapped file !
Page cache ‘
PMEM

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 9

DAX, PMDK, and what we did -

PostgreSQL‘ﬁ?}PostgreSQL

PostgreSQL

What we did

Context | File 1/O Context | File /O No context] Load/Store

User S YYJFFT_‘Q APIs ?)’V__i_t_‘?rgz_ APls __switch __Jinstructions
Kermnel m4m9 —mv»Vt 1 -,
Traditional DAX-enabled Memory- |
filesystem filesystem mapped file i
Page cache ‘
PMEM

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 10

Benefits of DAX and PMDK ..t

 With DAX only
« Use PMEM faster without change of the application

* With DAX and PMDK

* Improve the performance of I/O-intensive workload
* By reducing context switches and the overhead of API calls

’ M I Cro- b enc h mar k Microbenchmark throughput
+ DAX+PMDK is 2.5X as fast as (818 synehronous write)
DAX-only 150 12.4
©»210.0
o
5.0

*Try to introduce
PMDK into POSth’eSQL o0 DAX-only DAX+PMDK

(HPE NVDIMM, Linux kernel 4.16, ext4, PMDK 1.4)

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 11

Overview of my talk —

1. Introduction
* Persistent Memory (PMEM), DAX for files, and PMDK

2. Hacks and evaluation
I. XLOG segment file (Write-Ahead Logging)
li. Relation segment file (Table, Index, ...)

3. Tips related to PMEM
 Programming, benchmark, and operation

4. Conclusion

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 12

Approach —

* How to hack
v Replace read/write calls with memory copy
» Easier way, reasonable for our first step

« Have data structures on DRAM persist on PMEM directly,
similar to in-memory database

* What we hack

v i) XLOG segment files
» Critical for transaction performance

v ii) Relation segment files
» Many writes occur during checkpoint

* Other files (CLOG, pg_control, ...)

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 13

How to hack

v Replace read/write calls with memory copy

read/write (POSIX)

Open fd = open

(path, ...);
Write < nbytes = write

(fd, buf, count);
Sync ret = fdatasync(fd);
Read nbytes = read

(fd, buf, count);
Close ret = close(fd);

libpmem (PMDK)
pmem = pmem_map_Tfile
(path, len, ...);

pmem_memcpy_nodrain
(pmem, buf, count);

pmem_drain();

memcpy // from <string.h>
(buf, pmem, count);

ret = pmem_unmap(pmem, len);

Copyright©2018 NTT Corp. All Rights Reserved.

14

1) XLOG segment file
=

« Contains Write-Ahead Log records

« Guarantees durability of updates
* By having the records persist before committing transaction

* Fixed length (16-MiB per file)
» Each file has a monotonically increasing “segment number”

« Critical for transaction performance

« Backend cannot commit a transaction before the commit log
record persists on storage

* A transaction takes less time if the record persists sooner

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 15

1) How we hack XLOG

* Memory-map every segment file
* Fixed-length (16-MiB) file is highly compatible with memory-
mapping
* Memory-copy to it from the XLOG buffer

 Patch <backend/access/xlog.c> and so on
« 15 files changed, 847 insertions, 174 deletions
« Available on pgsqgl-hackers mailing list (search “PMDK?”)

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 16

1) Evaluation setup

[
Hardware NUMA node

CPU E5-2667 v4 x 2 (8 cores per node)

DRAM [NodeO/1] 32 GiB each

PMEM (NVDIMM-N) [NodeOQ] 64 GiB (HPE 8GB NVDIMM x 8)
NVMe SSD [NodeO] Intel SSD DC P3600 400GB
Optane SSD [NodeO] Intel Optane SSD DC 4800X 750GB
Distro Ubuntu 17.10

Linux kernel 4.16

PMDK 1.4

Filesystem ext4 (DAX available)

PostgreSQL base a467832 (master @ Mar 18, 2018)

postgresql.conf

{max,min}_wal size 20GB
shared_buffers 16085MB

checkpoint_timeout 12min

checkpoint_completion_target 0.7

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 17

1) Evaluation of XLOG hacks

« Compare transaction throughput by using pgbench
* pgbench -i -s 200

* pgbench -M prepared -h /tmp -p 5432 -c 32 -j) 32 -T 1800
 The checkpoint runs twice during the benchmark
* Run 3 times to find the median value for the result

« Conditions:

@ | (b) © | ©) ()

wal _sync_method | fdatasync | open_datasync | fdatasync | open_datasync | libpmem (New)
Hacked

PostgreSQL No hack No hack with PMDK

FS for XLOG ext4 (No DAX) ext4 (DAX enabled)

Device for XLOG Optane SSD PMEM

PGDATA NVMe SSD / ext4 (No DAX)

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 18

—

1) Results .

pgbench throughput

40. "
0.0 36.9 36.6 +§f":_ 38.1

35.0 32.6 328

Higher is better >

20.0

Throughput [10*

-
o
o

il
o

<
o

(@) (b) (c) (d) (e)
fdatasync open_datasync fdatasync open_datasync libpmem
No hack No hack Hacked
Optane PMEM

@ NTT Copyright©2018 NTT Corp. All Rights Reserved. 19

1) Discussion

Improve transaction throughput by 3%
* Roughly the same improvement as Yoshimi reported on
pgsql-hackers

« Seems small in the percentage, but not-so-small in the
absolute value (+1,200 TPS)

* Future work
« Performance profiling
« Searching for a query pattern for which our hack is more
effective

Abstract:

PMEM. The result show that, in regard to WAL, we achieve
up to 1.8x more TPS in customized INSERT-oriented
benchmark. We propose the patches containing approx.

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 20

Overview of my talk —

1. Introduction
* Persistent Memory (PMEM), DAX for files, and PMDK

2. Hacks and evaluation
I. XLOG segment file (Write-Ahead Logging)
li. Relation segment file (Table, Index, ...)

3. Tips related to PMEM
 Programming, benchmark, and operation

4. Conclusion

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 21

1) Relation segment file

* So-called data file (or checkpoint file)
« Table, Index, TOAST, Materialized View, ...

« Variable length up to 1-GiB
* A huge table and so forth consist of multiple segment files

 Critical for checkpoint duration

 Dirty pages on the shared buffer are written back to the
segment files

* A checkpoint takes less time if the pages are written back
sooner

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 22

1) How we hack Relation

* Memory-map only every 1-GiB segment file
« Memory-mapped file cannot extend or shrink
« Remapping the file seems difficult for me to implement

* Memory-copy to it from the shared buffer

 Patch <backend/storage/smgr/md.c> and so on
2 files changed, 152 insertions
« Under test, not published yet

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 23

1) Evaluation setup

i
Hardware NUMA node

CPU E5-2667 v4 x 2 (8 cores per node)

DRAM [NodeO/1] 32 GiB each

PMEM (NVDIMM-N) [NodeOQ] 64 GiB (HPE 8GB NVDIMM x 8)
NVMe SSD [NodeO] Intel SSD DC P3600 400GB
Optane SSD [NodeO] Intel Optane SSD DC 4800X 750GB
Distro Ubuntu 17.10

Linux kernel 4.16

PMDK 1.4

Filesystem ext4 (DAX available)

PostgreSQL base a467832 (master @ Mar 18, 2018)

postgresql.conf

{max,min}_wal_size 20GB

shared_buffers 16085MB
checkpoint_timeout 1d <= Not to kick ckpt automatically
checkpoint_completion_target 0.0 <= To complete ckpt ASAP

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 24

1) Evaluation of Relation hacks

«Compare checkpoint duration time as follows:

Shared
buffer

pgbench . | pgbench psql
¥ -1 -s 800 Restart,) , A few min. 4 CHECKPOINT
Server ‘ Server » Server » Server total=?
5 Flush ‘ | ' 7.37 GiB Io‘é_
Rel. sezi E Rel. se Rel. seZi E Rel. se filename
« Conditions:
PostgreSQL No hack No hack | Hacked with PMDK
FS for PGDATA extd (No DAX) ext4 (DAX enabled)
Device for PGDATA Optane SSD PMEM
Profile by Linux perf? No Yes

©) NTT

Copyright©2018 NTT Corp. All Rights Reserved.

25

1) Results .

Checkpoint duration
800 7.75

7.00
6.00
% 5.00
£4.00
3.00
2.00
1.00
0.00

3.75

<Je11eq SI JOMO']

No hack No hack Hacked
Optane PMEM

@ NTT Copyright©2018 NTT Corp. All Rights Reserved. 26

—

el

1) Profiling

Checkpoint profile

100.0 100.0
' 4.9 -7 points: Context switches (Green)
7.1
-\ -20 points: Overhead of write() (Skyblue)
8.7
80.0 N
" 1.0 k:others
ki) 226 3.4
o 77 k:page fault
; 60.0 mk:entry SYSCALL_64 family
% k:sys_write
0 mk: copy _user nocache
% 40.0 m u:memmove_movnt_sse2_clflush
x ® u:LockBufHdr
m u:others
20.0
0.0

(b) No hack (c) Hacked

-3 points: Memory copy +5 points: LockBufHdr (Orange)
® NTT (Deep blue and brown) Copyright©2018 NTT Corp. All Rights Reserved. 27

11) Discussion

 Shorten checkpoint duration by 30%

« The server can give its computing resource to the other
purposes

* Reduce the overhead of system calls and the
context switches
« Benefits of using memory-mapped files!

*The time of LockBufHdr became rather longer
 Open issue...

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 28

Conclusion of evaluation

* (1) Improve transaction throughput by 3%
« With 1,000-line hack for WAL

*(i1) Shorten checkpoint duration by 30%
« With 150-line hack for Relation

« We must bring out more potential from PMEM

* Not so bad in an easier way, but far from “2.5X” in micro-
benchmark

| think another way is to have data structures on DRAM
persist on PMEM directly

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 29

Overview of my talk —

1. Introduction
* Persistent Memory (PMEM), DAX for files, and PMDK

2. Hacks and evaluation
I. XLOG segment file (Write-Ahead Logging)
li. Relation segment file (Table, Index, ...)

3. Tips related to PMEM
« Programming, benchmark, and operation

4. Conclusion

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 30

CPU cache flush and cache-bypassing store..-x...

* The data should reach nothing but PMEM

 Don’t stop at half, volatile middle layer such as CPU caches
* Or it will be lost when the program or system crashes

* Xx64 offers two instruction families

* CLFLUSH - Flush data out of CPU
caches to memory

« MOVNT - Store data to memory, ‘ CPU
bypassing CPU caches

Caches
* PMDK supports both CLFLUSH MOVNT
* pmem_flush
* pmem_memcpy_nodrain PMEM

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 31

Memory-mapped file and Relation extension ...=...

« The two are not compatible

« Memory-mapped file cannot be extended while being
mapped

* Neither naive way is perfect
« Remapping a segment file on extend is time-consuming

* Pre-allocating maximum size (1GiB per segment) wastes
PMEM free space

* We must rethink traditional data structure towards
PMEM era

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 32

Page table and hugepage

« Hugepage will improve performance of PMEM

* By reducing page walk and Translation Lookaside Buffer
(TLB) miss

* PMDK on x64 considers hugepage

* By aligning the mapping address on hugepage boundary
(2MiB or 1GiB) when the file is large enough

 Pre-warming page table for PMEM will also make
the performance better
* By reducing page fault on main runtime

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 33

Controlling NUMA effect —

* Critical for stable performance on multi process-
Ing system

« Accessing to local memory (DRAM and/or PMEM) is fast
while remote is slow

* This applies to PCle SSD, but PMEM is more sensitive

NUMA node

*Binding processes to a certain node

. . 64 Gi5 [l Optane [l

* numactl --cpunodebind=X --membind=X =) ss0 I
- pget - Ed B

i CI;U |

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 34

New common sense of hotspot

« Something other than storage access could be
hotspot of transaction when we use PMEM

— (Conceptual figure)

Others Disk access ‘J
|

PMEM l
Others‘ - |—|

e Such as...
« Concurrency control such as locking
« Redundant internal memory copy

* Pre-processing such as SQL parse
« We fell into this trap and avoided it by prepared statement

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 35

Overview of my talk

1. Introduction
* Persistent Memory (PMEM), DAX for files, and PMDK

2. Hacks and evaluation
I. XLOG segment file (Write-Ahead Logging)
li. Relation segment file (Table, Index, ...)

3. Tips related to PMEM
 Programming, benchmark, and operation

4. Conclusion

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 36

Conclusion

 Applied PMDK into PostgreSQL

* In an easier way to use memory-mapped files and memory
copy

« Achieved not-so-bad results
* +3% transaction throughput
« -30% checkpoint duration

« Showed tips related to PMEM

« PMEM will change software design drastically

 We should change software and our mind to bring out
PMEM’s potential much more

. Let’s try PMEM and PMDK :)

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 37

Backup slides

o

Nt

Innovative R&D by NTT

Copyright©2018 NTT Corp. All Rights Reserved. 38

How to hack s

B
Current On DAX-enabled » Our Hacks
PostgreSQL : filesystem |
XLOG Shared XLOG Shared XLOG Shared
buffer | | buffer buffer | | buffer buffer | | buffer
write() = 'V'er:;”y
cCommit Checkpoint Py

| 1 Memory-
mapped

|
|
I S

Disk

@ NTT Copyright©2018 NTT Corp. All Rights Reserved. 39

SNIA NVM Programming Model

A

Innovative R&D by NTT

* Defines behavior between user space and OS

e Here we focus on NVM.PM.FILE mode

[Application]

User space

Kernel space

NVM.PM.FILE mode |-

Native file Load/ ‘I
API store I

[PM-aware kernel module j

[PM-aware file system)

' MMU
n{ﬂappings

NVM.PM.VOLUME mode}._]
VWWWWWWWWWWWWWWWY

—

PM device

PM device PM device

[NVM PM capable driver]

N

T

I
I
I
I
I
I
I
Y

PM device

[https://www.snia.org/sites/defauIt/fiIes/technical_work/finaI/NVMProgrammingModeI_vl.Z.pdf]

Copyright©2018 NTT Corp. All Rights Reserved. 40

APl walkthrough —

read/write memory-mapped file PMDK (libpmem)
fd = open(fd = open(
n

Ope path, flags, mode); path, flags, mode);
- // map cannot be extended

Allocate // so pre-allocate the file

err = posix_fallocate(pmem = pmem_map_file(
fd, 0, len); path, len, flags, mode,

- pmem = mmap (-

Map NULL, Ten, ..., fd, -1);

(C|OS€) - // accessing file via mapped

// address; not fd any more
ret = close(fd);

Write nbytes = write(memcpy (// bypassing cache if able

fd, buf, count); pmem, buf, count); // instead of flushing it

- for(i=0; 1i<count; i+=64) pmem_memcpy_nodrain(

Flush _mm_c1flush(pmem[i]1); pmem, buf, count);
Sync ret = fdatasync(fd); _mm_sfence(); pmem_drain();
Read nbytes = read(memcpy (memcpy (

fd, buf, count); buf, pmem, count); buf, pmem, count);
Unmap - ret = munmap(pmem, len); ret = pmem_unmap(pmem, len);
Close ret = close(fd); - -

[Blue: Intel Intrinsics; Red: PMDK (libpmem)]

® NTT Copyright©2018 NTT Corp. All Rights Reserved. 41

