
Copyright©2018 NTT Corp. All Rights Reserved.

Vacuum More Efficient Than Ever

Masahiko Sawada
NTT Open Source Software Center

@PGCon 2018

2Copyright©2018 NTT Corp. All Rights Reserved.

• Masahiko Sawada
 from Tokyo, Japan

• PostgreSQL contributor
 Multiple synchronous replication: FIRST and ANY methods (9.6 and

10)
 Freeze map (9.6)
 Skipping cleanup index vacuum (11)

Who Am I?

3Copyright©2018 NTT Corp. All Rights Reserved.

• What Is Vacuum?
• Three Vacuum Improvements

• Problems
• Solutions
• Challenges
• Evaluations

• Conclusion

Agenda

4Copyright©2018 NTT Corp. All Rights Reserved.

• PostgreSQL garbage collection feature
• Recover or reuse disk space occupied

• VACUUM command
• =# VACUUM tbl1, tbl2;
• =# VACUUM (ANALYZE, VERBOSE) tbl1;

• Auto vacuum
• autovacuum launcher process
• autovacuum worker processes

What Is Vacuum?

5Copyright©2018 NTT Corp. All Rights Reserved.

• Auto Vacuum (8.1~)
• Vacuum Delay (8.1~)
• Visibility Map (8.4~)
• Freeze Map (part of visibility map) (9.6~)
• Skipping index cleanup (11~)

History of Vacuum Evolution

6Copyright©2018 NTT Corp. All Rights Reserved.

1. Shorten the vacuum execution time
• Use resource as much as possible
• Reduce the amount of work
• Work in parallel

2. But, reduce impact on transaction processing
• Work lazily

What’s Needed For “Good Vacuum”?

7Copyright©2018 NTT Corp. All Rights Reserved.

• Vacuum works with three phases:
1. Collecting dead tuple TIDs till maintenance_work_mem amount

of memory is consumed
2. Vacuum indexes
3. Vacuum table

• Vacuum is a disk-intensive operation

How Vacuum Actually Works

1. Collecting TIDs

3. Table vacuum

2-1. Index vacuum

2-2. Index vacuum

dead tuple
TIDs

8Copyright©2018 NTT Corp. All Rights Reserved.

• 2 bits per block: all-visible and all-frozen
• Track which pages “might” have garbage

• all-visible bit = 1 means the corresponding page has only visible
tuples so we don’t need to vacuum it

Vacuum With Visibility Map

1. Collecting TIDs

3. Table vacuum

2-1. Index vacuum

2-2. Index vacuum

dead tuple
TIDsSkip all-visible

Pages :-)

9Copyright©2018 NTT Corp. All Rights Reserved.

• Table size

• Number of indexes

• Resources

Factors Of Vacuum Performance

• Visibility map
• Vacuum delays (make lazy)
• Skipping index cleanup

10Copyright©2018 NTT Corp. All Rights Reserved.

• Table size

• Number of indexes

• Resources

Factors Of Vacuum Performance

• Parallel vacuum
• Deferring index vacuums
• Range vacuum

• Visibility map
• Vacuum delays (make lazy)
• Skipping index cleanup

Today’s talk

11Copyright©2018 NTT Corp. All Rights Reserved.

• Table size

• Number of indexes

• Resources

Factors Of Vacuum Performance

• Parallel vacuum
• Deferring index vacuums
• Range vacuum

• Visibility map
• Vacuum delays (make lazy)
• Skipping index cleanup

Today’s talk

12Copyright©2018 NTT Corp. All Rights Reserved.

PARALLEL VACUUM

13Copyright©2018 NTT Corp. All Rights Reserved.

• Vacuum is performed by single process
• Vacuum could take a very long time

• Over days or even more!
• Taking longer time if table has multiple indexes

On Very Large Table

14Copyright©2018 NTT Corp. All Rights Reserved.

 Divide a large table
 Reduce autovacuum_delay_cost/limit

• Additional burden on the disk I/O instead

Current Solutions

15Copyright©2018 NTT Corp. All Rights Reserved.

• Execute vacuum with parallel workers
• Shorten the execution time of vacuum
• Note that this will consume more disk I/O

• A patch has been proposed
• “Block level Parallel Vacuum” (2016)
• However, must resolve RelExt lock issue first

• Please refer to “Moving relation extension locks out of heavyweight
lock manager” (2016)

Idea: Parallel Vacuum

16Copyright©2018 NTT Corp. All Rights Reserved.

How Does It Work?

Collect TIDs

Vacuum Table

Vacuum IndexA Vacuum IndexB

Collect TIDs Collect TIDs

Vacuum Table
Vacuum Table

Collect TIDs

Collect TIDs Collect TIDs

• Perform both TID collection and table vacuum with parallel
workers

• Dead tuple TIDs are shared on the shared memory(DSM)
• Each index is assigned to a worker
• Make some synchronizations among workers

Worker 1 Worker 3Worker 2

:

Clear
garbage TIDs

17Copyright©2018 NTT Corp. All Rights Reserved.

Evaluation (~8 indexes)

5x faster!!

RAM : 32GB
shared buffers: 512
MB
Table : 4GB
Index vacuum : 1
ioDrive SSD : 256GB

T
im

e(
m

s)

18Copyright©2018 NTT Corp. All Rights Reserved.

• Parallel vacuum makes vacuums significantly faster
• This consume more CPUs and disk I/O
• Patch has been proposed
• Relation extension lock issue must be solved first!

Summary

19Copyright©2018 NTT Corp. All Rights Reserved.

• Table size

• Number of indexes

• Resources

Factors of Vacuum Performance

• Parallel vacuum
• Deferring index vacuums
• Range vacuum

• Visibility map
• Vacuum delays (make lazy)
• Skipping index cleanup

Today’s talk

20Copyright©2018 NTT Corp. All Rights Reserved.

DEFERRING INDEX VACUUM

21Copyright©2018 NTT Corp. All Rights Reserved.

• Index vacuums could still be very long
• Table vacuum can be skipped by Visibility Map but index vacuum doesn’t have

such facility
• Index vacuum could be invoked N times in a vacuum processing

• Almost all index AMs require a full scanning on index
• Only 10 dead tuples in 1TB table requires whole index scans!

Looking Back To Analysis of Vacuum

Collecting TIDs

Table vacuum

Index vacuum 1

Index vacuum 2

Collecting TIDs

Table vacuum

Index vacuum 1

Index vacuum 2

Vacuum Efficient vacuum with VM

22Copyright©2018 NTT Corp. All Rights Reserved.

 Don’t trigger auto-vacuum with a small threshold
• What about manual vacuum?
• Indexes are not easy to bloat than tables

 Increase maintenance_work_mem to avoid calling
index vacuuming multiple times
• However, still requires index vacuum at least once

Current Solutions

23Copyright©2018 NTT Corp. All Rights Reserved.

• Spool garbage TIDs
• Don't trigger index vacuum unless the amount of spooled

garbage TIDs reached to the threshold
• Reduce the number of index vacuum

Idea: Deferring Index Vacuum

24Copyright©2018 NTT Corp. All Rights Reserved.

• Amount of garbage TID < threshold
• Vacuum only table and spool dead tuple TIDs

• Amount of garbage TID >= threshold
• Vacuum indexes

How Does It Work?

Table

Spool
TIDs

Spool
TIDs

Spool
TIDs

Index

Spool area

Threshold

Reached!

Vacuum
table

Vacuum
table

Vacuum
table

Vacuum
table

Vacuum
table

Vacuum
table

Vacuum
index

Vacuum
index

25Copyright©2018 NTT Corp. All Rights Reserved.

• There are related discussions
• “Proposal: Another attempt at vacuum improvements” (2011)
• “Single pass vacuum – take1” (2011)
• But it breaks on-disk format

Related Discussions

26Copyright©2018 NTT Corp. All Rights Reserved.

• Evaluate the performance improvement by reducing the
number of index vacuums

 Spool garbage TIDs to DSM
 When bulk-deletion we look up both collected TIDs and spooled

TIDs
• Introduce new storage parameter

vacuum_index_defer_size which controls how much dead
tuples can be spilled out

• However, don’t care about concurrent update and
durability :(

Evaluation

27Copyright©2018 NTT Corp. All Rights Reserved.

=# \dt+
 List of relations
 Schema | Name | Type | Owner | Size | Description
--------+--------------+-------+----------+-------- +------------
 public | defer_table | table | masahiko | 3458 MB |
 public | normal_table | table | masahiko | 3458 MB |
(2 rows)

-- Spool size is 100kB
=# ALTER TABLE defer_table SET (vacuum_index_defer_size = 100);

-- Disable deferring index vacuum
=# ALTER TABLE normal_table SET (vacuum_index_defer_size = 0);

Evaluation

28Copyright©2018 NTT Corp. All Rights Reserved.

1. Load data
2. Vacuum table to make VM
3. Loop until the amount of garbage reached to the

threshold (= 17000 tuples)
1. Delete 5000 tuples to make garbage
2. Vacuum

Vacuum will be performed 4 times, and index vacuum will
be executed at only the 4th vacuum

Evaluation

29Copyright©2018 NTT Corp. All Rights Reserved.

Evaluation

• Skipped index vacuum at 1st, 2nd and 3rd vacuum
• Deferring index vacuum made vacuum 2.1x faster
• At the 4th vacuum, deferring index vacuum took twice time than

the normal
• Looking up the collected TIDs as well as the spooled TIDs

30Copyright©2018 NTT Corp. All Rights Reserved.

• Deferring index vacuum have potentials of speed up
vacuums much

• In this evaluation, it speeds up 2.1x faster
• More tricks are required for the correct implementation

• To prevent vacuumed item pointers from being reused before index
vacuum

• To avoid breaking on-disk format

Summary

31Copyright©2018 NTT Corp. All Rights Reserved.

• Table size

• Number of indexes

• Resources

Factors Of Vacuum Performance

• Parallel vacuum
• Deferring index vacuums
• Range vacuum

• Visibility map
• Vacuum delays (make lazy)
• Skipping index cleanup

Today’s talk

32Copyright©2018 NTT Corp. All Rights Reserved.

RANGE VACUUM

33Copyright©2018 NTT Corp. All Rights Reserved.

Dilemma

DBA wants to avoid both disk I/O bursts and
affecting to TPS by vacuum as much as possible

DBA wants to complete vacuum as quickly
as possible

34Copyright©2018 NTT Corp. All Rights Reserved.

• Long-running vacuum likely to be canceled
• Restart vacuum from the beginning of the table again
• Cannot reclaim garbage that is made since the vacuum

started

Is it possible to use vacuum delays and to complete
vacuum in a short time?

Long-running Vacuum Problems

35Copyright©2018 NTT Corp. All Rights Reserved.

• The cost of vacuum a block can be regard as almost
constant

• The most spent time is disk I/O (read buffer, write WAL)
• Garbage on table might have locality
• Even though vacuum reclaims a block the new free space

got by vacuum depends on how much garbage exists on
the block

Efficiency Analysis of Vacuum

36Copyright©2018 NTT Corp. All Rights Reserved.

• If we got free space N byte by vacuum on M byte, efficiency of
vacuum k is N/M

• k = 1 means we get free space as mush as we vacuumed
• k ≈ 0 means we don’t get free space even if vacuumed lots of blocks

• All-visible of VM is cleared if even one tuple is inserted/deleted

Efficiency Analysis of Vacuum

Block number

Amount of
garbage

Good efficiency (k≈1)

Poor efficiency (k≈0)

37Copyright©2018 NTT Corp. All Rights Reserved.

Range Vacuum with Garbage Map

Before After

Vacuum
higher 10%

ranges

• Garbage map
 Track garbage status of bunch of blocks
 Reproduce the garbage status on table

• Range vacuum
 Preferably vacuum blocks having higher “k”
 Trigger vacuum more frequently

38Copyright©2018 NTT Corp. All Rights Reserved.

• WAL-based
• WAL knows the all block change information
• Don’t increase transaction latency as mush as possible

• Logical decoding didn’t match (so far)
• Need to track block-level changes
• Need to track aborted transactions

• “WALker” module
• A background worker that continues to read WAL
• Invoke corresponding plugin callbacks

• “garbagemap” plugin builds garbage maps
• Repository at https://github.com/MasahikoSawada/walker

Building Garbage Maps

39Copyright©2018 NTT Corp. All Rights Reserved.

• Divide a table by 4096 blocks (32MB) logically into ranges
• Track of # of garbage tuples per range by integer. 4MB for 2^32 blocks.

• Reorder transaction information and make garbage maps
• In a commit transaction, deleted tuples become garbage tuples
• In a abort transaction, inserted tuples become garbage tuples

• Vacuum only ranges having higher efficiency
• Also added the lower bound of using range vacuum

Garbage Map Details

WAL

WALker
(bgworker)

Backend
Backend

Backend

auto-vacuum
worker

Table

write

range
vacuum

read
generate

garbage maps

use

Garbage Maps

write

40Copyright©2018 NTT Corp. All Rights Reserved.

• Machine
• 144cores, 126GB RAM, 1.5TB SSD

• Target
• master branch (ff49430 snapshot) and with range vacuum feature

• Configurations
• autovacuum_vacuum_scale_factor = 0.04
• autovacuum_vacuum_cost_limit = 1000 (default is 200)
• autovaucum_vacuum_cost_delay = 20ms (by default)

• Workload
• pgbench (TPC-B) at scale factor 16000 (about 200GB)
• Using custom script (gaussian : uniformly = 9 : 1)
• 5 hours
• Run open-transaction for 10 min with 30 min intervals (to generate garbage

faster)
• Observation

• Transaction TPS
• Transaction latency
• Relation size

Evaluation

41Copyright©2018 NTT Corp. All Rights Reserved.

Results: Relation size

• auto-vacuum started about 2 hours after
• Master branch

• Didn’t complete auto-vacuum within 5 hours
• Took over 9 hours (not recorded)

• Range vacuum
• Run 6 times
• Processed 800 ranges (27GB, 10% of table) within 50min at an average

Started auto-vacuum master
range vac

212GB

215GB

42Copyright©2018 NTT Corp. All Rights Reserved.

Results: TPS and latency

• In master branch, latency became sometimes large after auto-vacuum
started
 Frequently updated blocks likely to be loaded to shared buffer

• TPS and latency of range vacuum branch was more stable
TPS
Latency

Master Range Vacuum

auto-vacuum starts auto-vacuum starts

43Copyright©2018 NTT Corp. All Rights Reserved.

• Range vacuum reclaims garbage space with minimum
side-affects in a short time

• Invoking range vacuum more frequently also means
calling index vacuum more frequently as well

• Combining with deferring index vacuum would be good idea
• Each range has the number of garbage tuples

• Could be the size of garbage instead
• Need to vacuum whole table if garbage placed uniformly

on the table

Summary

44Copyright©2018 NTT Corp. All Rights Reserved.

• Improvement ideas
• Parallel vacuum
• Deferring index vacuum
• Range vacuum and garbage map

• More improvement points
• Auto vacuum scheduling

• Patch is proposed
• Resource managements

• Using cgroups
• etc

Conclusion

45Copyright©2018 NTT Corp. All Rights Reserved.

Thank you!

Masahiko Sawada
Mail: sawada.mshk@gmail.com

Twitter: @sawada_masahiko

mailto:sawada.mshk@gmail.com

46Copyright©2018 NTT Corp. All Rights Reserved.

1. HOT-pruning and table vacuum mark all item pointers that are being pointed
by index tuple as VACUUM_DEAD

2. Spool dead tuple TIDs as bitmap per block
3. In an index vacuum, scan each index pages and check if index tuples are

pointing to spooled dead tuple TIDs
4. Reclaim matched index tuples and clear corresponding bits

• If all bits are cleared, record LSN where index vacuum invoked along with bitmap
5. At HOT-pruning or vacuum, mark VACUUM_DEAD item pointers as UNUSED

if current LSN > stored LSN

• Data representation of dead tuple TIDs
• dead tuple TIDs are stored into a new fork <relfilenode>_dt
• 300 bits (25 byte) for bitmap and 8 byte for LSN per 8kB block

• 1 dt page has 234 blocks information
• 1GB table -> 4MB dt fork, 1TB -> 4GB dt fork

• To existing check faster, before starting index vacuum create bloom filter for blocks of
which has any bits.

Spooling Dead Tuples TIDs

47Copyright©2018 NTT Corp. All Rights Reserved.

• autovacuum_vacuum_scale_factor = 0.04
• autovacuum_naptime = 10
• autovacuum_vacuum_cost_limit = 1000
• autovacuum_vacuum_cost_delay = 20ms
• checkpoint_completion_targt = 0.3
• garbagemap.min_range_vacuum_size = 10GB
• garbagemap.range_vacuum_percent = 30
• shared_buffers = 50GB
• max_wal_size = 100GB
• min_wal_size = 50GB

Configurations

48Copyright©2018 NTT Corp. All Rights Reserved.

Dead Tuples

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

