
Copyright©2017 NTT Corp. All Rights Reserved.

Partition and Conquer Large Data In
PostgreSQL 10

Amit Langote (NTT OSS Center)

Ashutosh Bapat (EnterpriseDB)

PGCon 2017, Ottawa

1 Copyright©2017 NTT Corp. All Rights Reserved.

Who

Amit Langote

– NTT OSS Center

– Co-author of the VACUUM progress reporting feature in 9.6

Ashutosh Bapat

– EnterpriseDB

2 Copyright©2017 NTT Corp. All Rights Reserved.

Outline

• Declarative Partitioning features in PostgreSQL 10

• Partitioning syntax examples and limitations

• Relationship with inheritance

• Why “declarative” partitioning sounds promising

• Partitioning optimizations with declarative partitioning

– Partition-pruning

– Partition-wise operations with examples, performance figures

3 Copyright©2017 NTT Corp. All Rights Reserved.

PostgreSQL 10 Introduces
Declarative Partitioning

4 Copyright©2017 NTT Corp. All Rights Reserved.

What does it provide yet

• Native support for range and list partitioning

• Fast tuple routing

• Commands for partition roll-in and roll-out

• Multi-level partitioning

• Creating partitions as foreign tables

• Significantly improved usability

5 Copyright©2017 NTT Corp. All Rights Reserved.

CREATE TABLE orders (

 order_id int,

 order_date date

) PARTITION BY RANGE (order_date);

CREATE TABLE orders_y17m05

 PARTITION OF orders

 FOR VALUES FROM ('2017-05-01') TO ('2017-06-01');

INSERT INTO orders VALUES (1, '2017-05-01');

INSERT 0 1

SELECT tableoid::regclass AS partition, * FROM orders;

 partition | order_id | order_date

--------------+----------+------------

orders_y17m05 | 1 | 2017-05-01

(1 row)

INSERT INTO orders VALUES (1, '2017-06-01');

ERROR: no partition of relation "orders" found for row

Quick examples

6 Copyright©2017 NTT Corp. All Rights Reserved.

CREATE TABLE orders_y17m06 (

 LIKE orders

) PARTITION BY RANGE (order_date);

CREATE TABLE orders_y17m06_1

 PARTITION OF orders_y17m06

 FOR VALUES FROM ('2017-06-01') TO ('2017-06-15');

CREATE TABLE orders_y17m06_2

 PARTITION OF orders_y17m06

 FOR VALUES FROM ('2017-06-15') TO ('2017-07-01');

ALTER TABLE orders

 ATTACH PARTITION orders_y17m06

 FOR VALUES FROM ('2017-06-01') TO ('2017-07-01');

INSERT INTO orders VALUES (2, '2017-06-01');

INSERT 0 1

INSERT INTO orders VALUES (3, '2017-06-17');

INSERT 0 1

Quick examples

7 Copyright©2017 NTT Corp. All Rights Reserved.

SELECT tableoid::regclass AS partition, * FROM orders;

 partition | order_id | order_date

----------------+----------+------------

orders_y17m05 | 1 | 2017-05-01

orders_y17m06_1 | 2 | 2017-06-01

orders_y17m06_2 | 3 | 2017-06-17

(3 rows)

EXPLAIN (COSTS OFF)

SELECT * FROM orders WHERE order_date < '2017-06-15';

 QUERY PLAN

Append

 -> Seq Scan on orders_y17m05

 Filter: (order_date < '2017-06-15'::date)

 -> Seq Scan on orders_y17m06_1

 Filter: (order_date < '2017-06-15'::date)

(5 rows)

Quick examples

8 Copyright©2017 NTT Corp. All Rights Reserved.

Quick examples

\d+ orders_y17m05

 Table "public.orders_y17m05"

 Column | Type | Collation | Nullable

-----------+---------+-----------+----------

order_id | integer | |

order_date | date | | not null

Partition of: orders FOR VALUES FROM ('2017-05-01') TO ('2017-06-01')

Partition constraint: ((order_date >= '2017-05-01'::date) AND

 (order_date < '2017-06-01'::date))

ALTER TABLE orders DETACH PARTITION orders_y17m05;

SELECT tableoid::regclass AS partition, * FROM orders;

 partition | order_id | order_date

-----------------+----------+------------

orders_y17m06_1 | 2 | 2017-06-01

orders_y17m06_2 | 3 | 2017-06-17

(2 rows)

9 Copyright©2017 NTT Corp. All Rights Reserved.

What does it NOT provide

• Ability to create indexes (hence constraints like UNIQUE) on

partitioned tables

• Automatic creation of partitions for incoming data or even a

“default” partition that would capture any data for which no

partition is defined

• Moving rows from one partition to another as part of executing an

UPDATE statement that modifies the partition key

• Routing tuples to foreign partitions

• Ability to change partitioning of data after-the-fact by “splitting” a

partition or by “merging” partitions

10 Copyright©2017 NTT Corp. All Rights Reserved.

Relationship with inheritance

• Partitioning is really a subset of the inheritance model,

– Although it imposes more constraints on the schema design and

provides more information to the system

• Currently uses the same optimizer code as used to perform

inheritance planning

– And hence suffers the same problems as inheritance when using

large number of partitions (child tables)

• Partitioning offers information about partitioning in a more

suitable format than when using inheritance

– Makes it possible to implement faster algorithms in the planner

for partitioned tables using this information that also scale well

– Makes it possible to create partition-wise plans

11 Copyright©2017 NTT Corp. All Rights Reserved.

Why is “declarative” partitioning promising

• Because PostgreSQL developers promised so for years? 

• More seriously, it establishes a base on which to implement performance

and scalability features for storing and accessing large amounts of data

using partitioned tables

• “Many” optimizer improvements possible

– Optimizer will be able to generate plans such that queries over partitioned

table(s) accessing large amounts of data can be performed using highly-

parallel per-partition units of work and generate such plans much quicker

• Potential for improvements in other areas of the backend code which

become bottleneck when using large number of tables (in the form of

partitions)

– For example, it might be possible to implement special scheme of locking for

partitions so that the lock manager is not overwhelmed by large number of

partitions

