Partition and Conquer Large Data In
PostgreSQL 10

Amit Langote (NTT OSS Center)
Ashutosh Bapat (EnterpriseDB)

PGCon 2017, Ottawa

Copyright©2017 NTT Corp. All Rights Reserved.

Innovative R&D by NTT

| D
Amit Langote

— NTT OSS Center
— Co-author of the VACUUM progress reporting feature in 9.6

Ashutosh Bapat
— EnterpriseDB

® NTT Copyright©2017 NTT Corp. All Rights Reserved. 1

[]
Outline N
Innovative R&D by NTT

« Declarative Partitioning features in PostgreSQL 10
« Partitioning syntax examples and limitations

« Relationship with inheritance

« Why “declarative” partitioning sounds promising

« Partitioning optimizations with declarative partitioning
— Partition-pruning

— Partition-wise operations with examples, performance figures

® NTT Copyright©2017 NTT Corp. All Rights Reserved.

PostgreSQL 10 Introduces
Declarative Partitioning

Copyright©2017 NTT Corp. All Rights Reserved. 3

What does it provide yet

« Native support for range and list partitioning
« Fast tuple routing

« Commands for partition roll-in and roll-out

« Multi-level partitioning

« Creating partitions as foreign tables

« Significantly improved usability

® NTT Copyright©2017 NTT Corp. All Rights Reserved.

Quick examples N

Innovative R&D by NTT

B
CREATE TABLE orders (
order id int,

order date date
) PARTITION BY RANGE (order date);

CREATE TABLE orders yl7mO05
PARTITION OF orders
FOR VALUES FROM ('2017-05-01") TO ('2017-06-01") ;

INSERT INTO orders VALUES (1, '2017-05-01");
INSERT 0 1

SELECT tableoid::regclass AS partition, * FROM orders;

partition | order id | order date
______________ S
orders yl7m05 | 1 | 2017-05-01
(1 row)

INSERT INTO orders VALUES (1, '2017-06-01");
ERROR: no partition of relation "orders" found for row

® NTT Copyright©2017 NTT Corp. All Rights Reserved. 5

Quick examples N

Innovative R&D by NTT

CREATE TABLE orders yl7m06 (
LTIKE orders
) PARTITION BY RANGE (Order_date);

CREATE TABLE orders yl7mO6 1
PARTITION OF orders yl7m0O6
FOR VALUES FROM ('2017-06-01") TO ('2017-06-15");

CREATE TABLE orders yl7mO6 2
PARTITION OF orders yl7m0O6
FOR VALUES FROM ('2017-06-15") TO ('2017-07-01");

ALTER TABLE orders
ATTACH PARTITION orders yl7m06
FOR VALUES FROM ('2017-06-01") TO ('2017-07-01");

INSERT INTO orders VALUES (2, '2017-06-01");
INSERT O 1
INSERT INTO orders VALUES (3, '2017-06-17");
INSERT O 1

® NTT Copyright©2017 NTT Corp. All Rights Reserved. 6

Quick examples <

Innovative R&D by NTT

SELECT tableoid::regclass AS partition, * FROM orders;

partition | order id | order date
________________ o
orders yl7m05 | 1 | 2017-05-01
orders yl7mO6 1 | 2 | 2017-00-01
orders yl7/mOo6 2 | 3 | 2017-006-17
(3 rows)

EXPLAIN (COSTS OFF)
SELECT * FROM orders WHERE order date < '2017-06-15";
QUERY PLAN

-> Seqg Scan on orders yl7m05

Filter: (order date < '2017-06-15"::date)
-> Seq Scan on orders yl/mO6 1

Filter: (order date < '2017-06-15'::date)

® NTT Copyright©2017 NTT Corp. All Rights Reserved. 7

Quick examples <

Innovative R&D by NTT

\d+ orders y17m05
Table "public.orders yl17m0O5"

Column | Type | Collation | Nullable
——————————— -t
order id | integer | |
order date | date | | not null
Partition of: orders FOR VALUES FROM ('2017-05-01'") TO ('2017-06-01")
Partition constraint: ((order date >= '2017-05-01"'::date) AND

(order date < '2017-06-01"::date))
ALTER TABLE orders DETACH PARTITION orders yl7m05;

SELECT tableoid::regclass AS partition, * FROM orders;

partition | order id | order date
_________________ T
orders yl7mO6 1 | 2 | 2017-06-01
orders yl7/mO6 2 | 3 | 2017-006-17

(2 rows)

® NTT Copyright©2017 NTT Corp. All Rights Reserved. 8

What does it NOT provide

« Ability to create indexes (hence constraints like UNIQUE) on
partitioned tables

« Automatic creation of partitions for incoming data or even a
“default” partition that would capture any data for which no
partition is defined

« Moving rows from one partition to another as part of executing an
UPDATE statement that modifies the partition key

« Routing tuples to foreign partitions

« Ability to change partitioning of data after-the-fact by “splitting” a

partition or by “merging” partitions

® NTT Copyright©2017 NTT Corp. All Rights Reserved.

Relationship with inheritance

=
« Partitioning is really a subset of the inheritance model,

— Although it imposes more constraints on the schema design and
provides more information to the system

« Currently uses the same optimizer code as used to perform
inheritance planning

— And hence suffers the same problems as inheritance when using
large number of partitions (child tables)

« Partitioning offers information about partitioning in a more
suitable format than when using inheritance

— Makes it possible to implement faster algorithms in the planner
for partitioned tables using this information that also scale well

— Makes it possible to create partition-wise plans

® NTT Copyright©2017 NTT Corp. All Rights Reserved.

Why is “declarative” partitioning promising

Because PostgreSQL developers promised so for years? ©

More seriously, it establishes a base on which to implement performance
and scalability features for storing and accessing large amounts of data

using partitioned tables

“Many” optimizer improvements possible
— Optimizer will be able to generate plans such that queries over partitioned
table(s) accessing large amounts of data can be performed using highly-
parallel per-partition units of work and generate such plans much quicker
Potential for improvements in other areas of the backend code which
become bottleneck when using large number of tables (in the form of
partitions)
— For example, it might be possible to implement special scheme of locking for
partitions so that the lock manager is not overwhelmed by large number of

partitions

® NTT Copyright©2017 NTT Corp. All Rights Reserved.

