
Markus Nullmeier

Zentrum für Astronomie der Universität Heidelberg
Astronomisches Rechen-Institut

mnullmei@ari.uni.heidelberg.de
https://github.com/mnullmei

OUZO for indexing sets

Accelerating queries to sets with GIN, GiST,
and custom indexing extensions

Sets

● Come up as a model of various
real-world data

● Not available as such in PostgreSQL, but
– Use keys of JSONB / Hstore as elements:

 SELECT '{"elem1": 1, "elem2": 2, "elem3": 1}'::json;

– Use sorted arrays:
 SELECT '{3,11,17,29}';

Some PostgreSQL
set operations

create extension intarray;

● Overlap SELECT '{5,17,23}'::int[] && '{3,11,17,29}'::int[];

● Subset SELECT '{17,23}'::int[] && '{3,23,29}'::int[];

● Union SELECT '{}'::int[] | '{1,3,5}'::int[];

● Intersection SELECT '{2}'::int[] & '{1,2,3}'::int[];

Indexing sets

● Typical techniques
– “inverted file” = inverted index

● elements as keys, sets as indexed columns
● Very good for single-element search
● In PG: available for intarray, JSONB, hstore

– RD-Trees
● Useful for superset queries
● Available for intarray via GiST

Evaluation

● PG’s built-in / contrib features
are sufficient for most uses
– Small to medium-sized sets
– Index support is there

● Limitations
– Any set operation must load the whole set

from disk / buffers
● not necessarily so: PG_DETOAST_DATUM_SLICE

– May be inefficient for domain-specific set types

● Sky coverage of astronomical surveys
 gravitational wave event⇢

←Multi-Order Coverage

= set of sphere elements
 of different orders
 → Set of integer intervals

A use case from astronomy

A use case from astronomy

● Sky coverage

1 diamond element
 = 1 integer interval

1 set
 = 1 list of intervals

{[2, 6) [17, 30) [33, 40)
 [123, 124) [332, 438), ...}

Use case: details (I)

● Sky coverage sets may very detailed,
i. e., large

● Fast response times for public data required
● Domain-specific standard

(IVOA MOC, Healpix-based)
– “multi-order coverage”

● Many astronomical on-line databases use
PostgreSQL

Use case: details (II)

● Run-length compression
for spatial locality
– Any large sky element, consisting of

a large number of elements at the
finest resolution
is encoded as an interval of 2 integers

Custom data type

{[2, 6) [17, 30) [33, 40) [123, 124) [332, 438)}

● Set of intervals of integers
– = boundaries at finest level of resolution
– Non-overlapping
– Stored in sorted order

● Typical operations
– Subset for single numbers (points) or sets
– Set overlap

 Make sequential scan fast
● Loading a whole sky map just for one point is inefficient

● Use sliced access of on-disk “TOAST” data

● Serialise each sky map B-tree-like

– read-only

– Page size = TOAST fragment size, 1996 bytes
● Write once means:

– No space wasted, tree is nicely balanced

– No penalty for full sequential access

 Make sequential scan fast
● Searching one point on sufficiently fast machine in

17K objects: 75ms

● On-Disk serialisation of a single interval set as B-tree

{[2, 6) [17, 30) [33, 40) [123, 124) [332, 438)}

Still not fast enough?

● Ordinary, element-wise inverted indexes
impossible

● ...but using intervals as keys would do the trick

 sorted intervals sets of pointers to sky maps

 [17, 30) { obj7, obj11 }

 [843, 2577) { obj2, obj108, obj109 }

 [5756, 9433) { obj108, obj732, obj11030 }

... ...

Sky map indexing

● Intervals-as-keys
– must not overlap, else inefficient
– indexing with GIN impossible

● RUM to the rescue!
– GIN descendant with various improvements
– usable as installable index extension
– PostgreSQL license
https://github.com/postgrespro/rum

– must be somewhat modified...

Project “OUZO”

● “Often Useful Zermelo* Ordering”
● Index access method for set of intervals
● Generic for any kind of interval key type

– and associated set type

*Ernst Friedrich Ferdinand Zermelo (1871-1953),
 founder of axiomatic set theory

Project “OUZO”

● Relatively high-level extension of RUM
– Complete reuse of concurrent B-tree code

● for entry tree as well as for posting trees
– Will be backward compatible

OUZO: key changes to RUM

● Insertion to the index must split the
intervals-as-keys
– of the inserted set (sky map)
– and all overlapping keys already in the

index
● B-tree insertion requires ‘lower bound’

search
● Additional support functions for the

operator class

Insertion interval split

● To insert: interval [96,128) of obj108
● Index before:

● Index after insertion:

● One of 13 possible cases

 [32, 96) { obj7, obj11 }

 [96, 128) { obj7, obj11, obj108 }

 [32, 128) { obj7, obj11 }

‘lower bound’ search for RUM

● Return exact match of start of interval
or next higher
– RUM mostly only uses exact match so far
– Existing implementation ‘almost’ gives

lower bounds for searches
● Allows much code reuse

– RUM features C-style object orientation
for its B-trees

– Re-implement ‘find in leaf page’ method

New ‘SQL’ support functions

● Specified in ‘create operator class’
DDL instruction
– makes indexes usable

for specific data types
● internal get_left_boundary(interval)

● internal get_right_boundary(interval)

● int compare_boundaries(internal, internal)

● interval make_interval(internal, internal)

– ‘internal’: basically
 opaque pointer to boundary

Concurrency of index insertion

● At most 3 intervals must be changed
at the same time
– other backends modifying entry tree

do not wait too long
● ‘Long’ intervals are inserted

 on step at a time
– Must release locks after each insertion

elementary step
– Should give decent concurrency

Markus Nullmeier

Zentrum für Astronomie der Universität Heidelberg
Astronomisches Rechen-Institut

mnullmei@ari.uni.heidelberg.de
https://github.com/mnullmei

Thank you for listening!

Questions?

