
© 2013 EDB All rights reserved. 1

Faster and Durable Hash Indexes

• Amit Kapila | 2017.05.25

2

● Hash indexes

● Locking improvements

● Improved usage of space

● Code re-factoring to enable write-ahead-logging

● Write-ahead-logging

● Hash utility functions

● Further improvements

Contents

3

Hash indexes

● Hash indexes store 32-bit hash code for each indexed item.

● By definition, any operation in the hash index in O(1),
however with duplicates that is not true.

● They are primarily used in equality search conditions (Select
c1 From tab1 Where c2='xx';).

● Hash indexes are preferred to be used for unique columns.

4

Hash indexes

0

4

2

1

5

6

98

10

Meta Page Bucket Page Overflow Page

3

Bitmap Page

5

● Hash indexes

● Locking improvements

● Improved usage of space

● Code re-factoring to enable write-ahead-logging

● Write-ahead-logging

● Hash utility functions

● Further improvements

Contents

6

Locking improvements

● Changed the heavyweight locks (locks that are used for
logical database objects to ensure the database ACID
properties) to lightweight locks (locks to protect shared data
structures) for scanning the bucket pages.

● Acquiring the heavyweight lock was costlier as compare to
lightweight locks.

● Scans and Inserts can happen in parallel to split of a bucket.

7

Locking improvements

● Concurrency between Vacuum and Scans is also improved
to some extent.

● Scans can precede Vacuum on the same bucket. This can
be helpful in situations where bucket contains many overflow
pages.

● The split operation can be interrupted and can be completed
at a later time.

8

Locking improvements

● Each search operation needs to access metapage to find the
bucket that contains tuple being searched which leads to high
contention around metapage.

● metapage is cached in backend local cache.

● Avoids a significant amount of buffer manager traffic and
contention for accessing metapage.

9

Locking improvements (test setup)

● Performance comparison of hash index and btree.

● pgbench read-only workload where data fits in shared buffers.

● IBM POWER-8 having 24 cores, 192 hardware threads,
492GB RAM.

10

Locking improvements

● The performance
of hash index has
increased at all
client counts in the
range of 7% to
81%.

● The impact is
more pronounced
at higher client
counts.

11

Locking improvements

● The hash index
performs better
than btree in the
range of 10~22%.

● An improvement in
the range of 40-
60% for some
other workloads
has been
observed when
hash indexes are
used for unique
index columns.

12

● Hash indexes

● Locking improvements

● Improved usage of space

● Code re-factoring to enable write-ahead-logging

● Write-ahead-logging

● Hash utility functions

● Further improvements

Contents

13

Improved usage of space

● Prior to PostgreSQL-10, each split in hash index generally
doubles the size of the hash index.

● To mitigate this problem, we now divide the larger splitpoints
into four equal phases.

● Instead of growing from 4GB to 8GB all at once, a hash index
will now grow from 4GB to 5GB to 6GB to 7GB to 8GB.

14

Improved usage of space

● Single page vacuum.

● Mark the items as dead page-at-a-time.

● If the space on the page is full, try to clean any dead items
on the page and use the cleaned up space.

● This accelerates space recycling and reduces bloat.

15

Improved usage of space (test setup)

● Size comparison of hash and btree indexes on UUID column.

● Schema
● CREATE TABLE hash_index_table (uuid_type UUID, bid int, abalance int,

filler char(84));

● CREATE INDEX hash_index on hash_index_table USING hash (uuid_type)
with (fillfactor = 80);

● Scale factor = 10 means 1000000 tuples in tables

16

Improved usage of space

● The size of the
hash index on
Head is less than
or equal to its size
in 9.6.

● The size of the
hash index in 9.6
is 45~50% larger
than Head. 100 200 400 500 700 1000 2000 3000 4000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Data load

 index on uuid column

9.6

Head

scale factor

s
iz

e
 in

 M
B

17

Improved usage of space

● The size of the
hash index is less
than the btree
index on all scale
factors.

● The size of the
btree index is
15~32% larger
than the hash
index. 100 200 400 500 700 1000 2000 3000 4000

0

2000

4000

6000

8000

10000

12000

14000

Data load

index on uuid column

Head-Btree

Head-Hash

scale factor

s
iz

e
 in

 M
B

18

● Hash indexes

● Locking improvements

● Improved usage of space

● Code re-factoring to enable write-ahead-logging

● Write-ahead-logging

● Hash utility functions

● Further improvements

Contents

19

Code re-factoring to enable write-ahead-
logging

● There are many places in the code of hash indexes where
the operations that are atomic were not performed together.

● Reorganize the code to perform those operations together, so
that they can be WAL-logged.

20

Code re-factoring (Squeeze bucket operation)

● We were moving (adding) tuples one-by-one from the bucket
later in the chain to the bucket prior in the chain.

● This could easily lead to the same tuple returned twice if we
would have logged it that way.

● Ensure that all the tuples from one bucket page are moved
to another page in one-go.

21

Code re-factoring (Overflow page allocation
operation)

● Allocation of new page and addition of the same in overflow
chain are done separately.

● Adding separate WAL for each of those operations could
waste newly allocated page if the system crashes after
allocation of the new page but before adding it to overflow
chain.

● Ensure allocation of new overflow page and addition of same
in the overflow chain is performed as one atomic operation.

22

Code re-factoring (Split bucket operation)

● The start of split operation involves updating metapage and
mark old/new bucket to indicate split operation is in progress.

● These operations were performed separately and logging
them separately could lead to wrong query results after a
crash or on standby.

● Ensure that these operations are performed atomically.

23

Code re-factoring (Create index operation)

● It involves the creation of a different type of pages in index
and initialization of same.

● Re-organize code such that DO and REDO routines can
share a common part of the code and all the related page
modifications are done in a single section of code.

● This allows writing WAL record for each of the sub-operations.
 We don't try to write a single WAL record for all of the sub-
operations as any error in create index operation will rollback
the whole operation.

24

● Hash indexes

● Locking improvements

● Improved usage of space

● Code re-factoring to enable write-ahead-logging

● Write-ahead-logging

● Hash utility functions

● Further improvements

Contents

25

Write-ahead-logging

CREATE TABLE test_hash (a int, b text);

INSERT INTO test_hash VALUES (1, 'one');

CREATE INDEX test_hash_a_idx ON test_hash USING
hash (a);

WARNING: hash indexes are not WAL-logged and their use
is discouraged

● WARNING is removed now, hurray!

26

Write-ahead-logging

● Hash indexes are crash-safe and usable on standby's which
will enable its usage on production databases.

● “snapshot too old” is now supported for tables with hash
indexes.

● The hash index operations like create index, insert, delete,
bucket split, allocate overflow page, and squeeze in
themselves don't guarantee hash index consistency after a
crash.

● To provide robustness, we write WAL for each of these
operations.

27

Write-ahead-logging

● CREATE INDEX writes multiple WAL records. First, we write
a record to cover the initialization of the metapage, followed
by one for each new bucket created, followed by one for the
initial bitmap page.

● It's not important for index creation to appear atomic,
because the index isn't yet visible to any other transaction,
and the creating transaction will roll back in the event of a
crash.

28

Write-ahead-logging

● An insertion that causes split constitutes of multiple atomic
actions (insertion itself, allocation of a new bucket, overflow
bucket pages, update meta information to indicate split is
complete).

● If the system crashes in-between multiple atomic operations
after recovery old and new buckets are marked with flags to
indicate split is in progress.

● The split will be completed at next insert or split from the old
bucket.

29

Write-ahead-logging

● A deletion operation constitutes of multiple atomic operations
like the removal of tuples, mark the bucket to indicate no
removable items remain, update the metapage with the
reduced live tuple count.

● If the system crashes in the middle of operations, it can lead
to next vacuum attempts to clean the already clean bucket
but overall operations will work fine.

30

Write-ahead-logging

● A squeeze operation moves tuples from one of the buckets
later in the chain to one of the buckets earlier in the chain.

● It writes WAL record when either the bucket to which it is
writing tuples is filled or bucket from which it is removing the
tuples becomes empty.

● If the system crashes in the middle of this operation, after
recovery, the operations will work correctly, but the index will
remain bloated until the next vacuum squeeze the bucket
completely.

31

Write-ahead-logging (verification)

● The verification for each of the operation is done with the
help of WAL consistency checker (guc:
wal_consistency_checking).

● This guc variable allows full page image along with WAL
record for an action to be recorded and subsequently when
the WAL record is replayed, it first applies the WAL and then
test whether the buffers modified by the record match the
stored images.

● Manual crash-recovery has been tested by crashing the
system at different stages such that pages written are torn-ed.

32

● Hash indexes

● Locking improvements

● Improved usage of space

● Code re-factoring to enable write-ahead-logging

● Write-ahead-logging

● Hash utility functions

● Further improvements

Contents

33

Hash utility functions

● pgstathashindex
- It provides
information
about hash
index.

- This function is
present in
pgstattuple
extension.

Column Description

version HASH version number

bucket_pages Number of bucket pages

overflow_pages Number of overflow pages

bitmap_pages Number of bitmap pages

unused_pages Number of unused pages

live_items Number of live tuples

dead_tuples Number of dead tuples

free_percent Percentage of free space

34

Hash utility functions

● These functions
are part of
pageinspect
extension.

● These functions
provide
information
about different
type of hash
index pages.

Function name Description

hash_page_type returns page type of the given
HASH index page.

hash_page_stats returns information about a
bucket or overflow page of a
HASH index.

hash_page_items returns information about the
data stored in a bucket or
overflow page of a HASH index
page.

hash_bitmap_info shows the status of a bit in the
bitmap page for a particular
overflow page of HASH index.

hash_metapage_info returns information stored in
meta page of a HASH index.

35

● Hash indexes

● Locking improvements

● Improved usage of space

● Code re-factoring to enable write-ahead-logging

● Write-ahead-logging

● Hash utility functions

● Further improvements

Contents

36

Further Improvements

● Add UNIQUE capability to hash indexes.

● Speed up Create Index operation – Bypass buffer manager
layer and perform insertion page-at-a-time as we do for btree
indexes.

● Write performance – Each insert operation updates meta-
page for which it needs to acquire a lock on meta-page.

37

Further Improvements

● Squeeze operation performance – We always need to take a
lock on next overflow page before releasing the previous page
lock in bucket chain. This has a bad impact on concurrency
with other operations.

● As we don't store the key in hash index, supporting multi-
column index, push down of scan keys and index-only-scan
are not straight forward.

38

● Thanks to Ashutosh Sharma and Mithun C Y who have
helped me in getting performance data for this presentation.

39

Thanks!

	Presentation Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

