
Hash Joins 
Past, Present & Future

Thomas Munro, PGCon 2017, Ottawa

About me

• EnterpriseDB Database Server team (~ 2 years)

• PostgreSQL contributions: SKIP LOCKED,
remote_apply, replay_lag, DSA (co-author),
various smaller things, debugging and review

• Relevant active proposal: parallel-aware hash
join

Joins

Hash Tables

Simple Hash Joins

Multi-Batch Hash Joins

Parallel Hash Joins

Open Problems

Questions

Joins
• A set of

operators from
the relational
algebra

• Join operators
take two
relations and
produce a new
relation

Example join syntax in SQL
• R, S WHERE R.foo = S.foo

• R [INNER] JOIN S ON R.foo = S.foo

• R {LEFT|RIGHT|FULL} OUTER JOIN S  
ON R.foo = S.foo

• R WHERE [NOT] EXISTS  
(SELECT * FROM S WHERE R.foo = S.foo)

• R WHERE foo IN  
(SELECT foo FROM S)

Execution strategies
• Nested loop: 

For each tuple in outer relation, scan inner
relation

• Merge join: 
Scan inner and outer relations in the same order

• Hash join: 
Build a hash table from inner relation, then probe
it for each value in outer relation

M-x squint-mode
• A hash join is a bit like a nested loop with a temporary in-

memory hash index built on the fly

• Hash joins like RAM; early memory-constrained SQL
systems had only nested loops and merge joins

• Large RAM systems enabled hash join, but also made
sorting faster, so which is better? See extensive writing on
sort vs hash, but we are very far from the state of the art in
both cases…

• Choice of algorithm limited by join conditions and join type

postgres=# select * from r full join s on r.i != s.i;
ERROR: FULL JOIN is only supported with merge-joinable or hash-joinable join conditions

Joins

Hash Tables

Simple Hash Joins

Multi-Batch Hash Joins

Parallel Hash Joins

Open Problems

Questions

Let a hundred  
hash tables bloom

• DynaHash: chained (conflict resolution by linked
lists), private or shared memory, general
purpose

• simplehash: open addressing (conflict resolution
by probing), private

• Hash join’s open coded hash table: why?!

Hash join table
• Little more than an array

• Multiple tuples with same key (+ unintentional hash collisions);
so you’d need to manage your own same-key chain anyway

• Hash join has an insert-only phase followed by a read-only probe
phase, so very few operations needed

• If we need to shrink it due to lack of memory or expand the
number of buckets, it’s still the same: free it, allocate a new one
and reinsert all the tuples

• It’s unclear what would be gained by using one of the other
generic implementations: all that is needed is an array!

tuple tuple

tuple

tuple

hash(key) = 42

Chunk-based storage
• Tuples are loaded into 32KB chunks, to reduce palloc

overhead

• This provides a convenient way to iterate over all tuples
when we need to resize the bucket array: just replace the
array, and loop over all tuples in all chunks reinserting
them into the new buckets (= adjusting pointers)

• Also useful if we need to dump tuples due to lack of
memory: loop over all tuples in all chunks, copying some
into new chunks and writing some out to disk

Joins

Hash Tables

Simple Hash Joins

Multi-Batch Hash Joins

Parallel Hash Joins

Open Problems

Questions

 Hash Join
 Hash Cond: <condition>
 -> <outer plan>
 -> Hash
 -> <inner plan>

High level algorithm
• Build phase: load all the tuples from the inner

relation into the hash table

• Probe phase: for each tuple in the outer relation,
try to find a match in the hash table

• Unmatched phase: for full outer joins and right
outer joins only (“right” meaning inner plan),
scan the whole hash table for rows that weren’t
matched

Optimisations

• Empty outer: before attempting to build the hash
table, try to pull a tuple from the outer plan; if
empty, then end without building hash table

• Empty inner: after building the hash table, if it
turns out to be empty then end without probing

• Out joins prevent one or both of the above

Buckets
• Number of tuples* / number of buckets = load factor

• The planner estimates the number of rows in the inner
relation, and the hash table is initially sized for a load
factor of one (rounding up to power of two)

• If the load factor turned out to be too high the bucket
array is resized and tuples are reinserted by looping
over the storage chunks

*ideally we’d probably use number of distinct keys,
not number of tuples

 Hash Join (actual rows=2000 loops=1)
 Hash Cond: (s.i = r.i)
 -> Seq Scan on s (actual rows=10000 loops=1)
 -> Hash (actual rows=2000 loops=1)
 Buckets: 2048 (originally 1024) 
 Batches: 1 (originally 1) 
 Memory Usage: 87kB
 -> Seq Scan on r (actual rows=2000 loops=1)
 Filter: ((i % 5) < 5)

Joins

Hash Tables

Simple Hash Joins

Multi-Batch Hash Joins

Parallel Hash Joins

Open Problems

Questions

Respecting work_mem
• Partition the inner relation into “batches” such that

each inner batch is estimated to fit into work_mem

• Known as the “Grace” algorithm, or “hybrid” with
the additional refinement that partition 0 is loaded
into the hash table directly to avoid writing it out to
disk and reading it back in again

• Adaptive batching: if any batch turns out to be too
large to fit into work_mem, double the number of
batches (split them)

Optimisation

• “Skew optimisation”: if the planner determines
that we should use a multi-batch hash join, then
try to use statistics to minimise disk IO. Find the
most common values from the outer plan and
put matching tuples from the inner plan into
special “skew buckets” so that they can be
processed as part of partition 0 (ie no disk IO).

hash
table 
p0

file
inner
p1

file
inner
p2

file
inner
p3

build

inner
relation

outer
relation

skew
hash
table

file
inner
p2

file
inner
p3

probe

inner
relation

outer
relation

file
outer

p1

file
outer

p2

file
outer
p3

file
inner
p1

hash
table 
p0

skew
hash
table

file
inner
p2

file
inner
p3

next
batch

inner
relation

outer
relation

file
outer

p1

file
outer

p2

file
outer
p3

file
inner
p1

hash
table 
p1

file
inner
p2

file
inner
p3

probe

inner
relation

outer
relation

file
outer

p1

file
outer

p2

file
outer
p3

file
inner
p1

hash
table 
p1

file
inner
p2

file
inner
p3

next
batch

inner
relation

outer
relation

file
outer

p1

file
outer

p2

file
outer
p3

file
inner
p1

hash  

table  
p2

work_mem full

file
inner p2

shrink

inner
relation

outer
relation

file
inner p1

hash
table 
p2

file
inner p3

file
inner p4

file
inner p5

file
inner p6

file
inner p7

file
outer p1

file
outer p5

file
outer p4

file
outer p6

file
outer p2

file
outer p7

file
outer p3

file
inner p2

probe

inner
relation

outer
relation

file
inner p1

hash
table 
p2

file
inner p3

file
inner p4

file
inner p5

file
inner p6

file
inner p7

file
outer p1

file
outer p5

file
outer p4

file
outer p6

file
outer p2

file
outer p7

file
outer p3

Hash join behaviour modes
• “Optimal” — the planner thinks the hash table will fit in memory,

and the executor finds this to be true

• “Good” — the planner thinks that N > 1 batches will allow every
batch to fit in work_mem, and the executor finds this to be true

• “Bad” — as for “optimal” or “good”, but the executor finds that it
needs to increase the number of partitions, dumping some of
tuples out to disk, and possibly rewriting outer tuples

• “Ugly” — as for “bad”, but the executor finds that the data is
sufficiently skewed that increasing the number of batches won’t
help; it stops respecting work_mem and hopes for the best!

Out of memory: Kill process 1020 (postgres) score 64 or sacrifice child
Killed process 1020 (postgres) total-vm:445764kB, anon-rss:140640kB, file-rss:136092kB

Optimal
SET work_mem = '64MB'; 
SELECT COUNT(*) FROM simple r JOIN simple s USING (id);

 Aggregate (cost=65418.00..65418.01 rows=1 width=8) (actual time=1496.156..1496.156 rows=1 loops=1)
 -> Hash Join (cost=30834.00..62918.00 rows=1000000 width=0) (actual time=603.086..1369.185 rows=1000000 loops=1)
 Hash Cond: (r.id = s.id)
 -> Seq Scan on simple r (cost=0.00..18334.00 rows=1000000 width=4) (actual time=0.019..161.704 rows=1000000 loops=1)
 -> Hash (cost=18334.00..18334.00 rows=1000000 width=4) (actual time=598.441..598.441 rows=1000000 loops=1)
 Buckets: 1048576 Batches: 1 Memory Usage: 43349kB
 -> Seq Scan on simple s (cost=0.00..18334.00 rows=1000000 width=4) (actual time=0.033..250.199 rows=1000000 loops=1)

Good
SET work_mem = '1MB';
SELECT COUNT(*) FROM simple r JOIN simple s USING (id);
 
 Aggregate (cost=81046.00..81046.01 rows=1 width=8) (actual time=1985.022..1985.022 rows=1 loops=1)
 -> Hash Join (cost=34741.00..78546.00 rows=1000000 width=0) (actual time=556.620..1851.942 rows=1000000 loops=1)
 Hash Cond: (r.id = s.id)
 -> Seq Scan on simple r (cost=0.00..18334.00 rows=1000000 width=4) (actual time=0.039..253.158 rows=1000000 loops=1)
 -> Hash (cost=18334.00..18334.00 rows=1000000 width=4) (actual time=555.067..555.067 rows=1000000 loops=1)
 Buckets: 32768 Batches: 64 Memory Usage: 808kB
 -> Seq Scan on simple s (cost=0.00..18334.00 rows=1000000 width=4) (actual time=0.007..254.166 rows=1000000 loops=1)

Bad
SET work_mem = '1MB'; 
SELECT COUNT(*) FROM simple r JOIN bigger_than_it_looks s USING (id);

 Aggregate (cost=30453.00..30453.01 rows=1 width=8) (actual time=2191.448..2191.449 rows=1 loops=1)
 -> Hash Join (cost=8356.50..30450.50 rows=1000 width=0) (actual time=644.671..2065.686 rows=1000000 loops=1)
 Hash Cond: (r.id = s.id)
 -> Seq Scan on simple r (cost=0.00..18334.00 rows=1000000 width=4) (actual time=0.025..192.848 rows=1000000 loops=1)
 -> Hash (cost=8344.00..8344.00 rows=1000 width=4) (actual time=643.542..643.542 rows=1000000 loops=1)
 Buckets: 32768 (originally 1024) Batches: 64 (originally 1) Memory Usage: 808kB
 -> Seq Scan on bigger_than_it_looks s (cost=0.00..8344.00 rows=1000 width=4) (actual time=0.022..331.981 rows=1000000 loops=1)

Ugly
SET work_mem = '1MB';
SELECT COUNT(*) FROM simple r JOIN awkwardly_skewed s USING (id);
 
 Aggregate (cost=30453.00..30453.01 rows=1 width=8) (actual time=1687.089..1687.090 rows=1 loops=1)
 -> Hash Join (cost=8356.50..30450.50 rows=1000 width=0) (actual time=1047.639..1571.196 rows=1000000 loops=1)
 Hash Cond: (r.id = s.id)
 -> Seq Scan on simple r (cost=0.00..18334.00 rows=1000000 width=4) (actual time=0.018..171.964 rows=1000000 loops=1)
 -> Hash (cost=8344.00..8344.00 rows=1000 width=4) (actual time=625.913..625.913 rows=1000000 loops=1)
 Buckets: 32768 (originally 1024) Batches: 2 (originally 1) Memory Usage: 35140kB
 -> Seq Scan on awkwardly_skewed s (cost=0.00..8344.00 rows=1000 width=4) (actual time=0.019..330.268 rows=1000000 loops=1)

Joins

Hash Tables

Simple Hash Joins

Multi-Batch Hash Joins

Parallel Hash Joins

Open Problems

Questions

Parallel query recap
• “Partial plans” are plans that can be run by many

workers in parallel, so that each will generate a
fraction of the total results

• Parallel Sequential Scan and Parallel Index Scan
nodes emit tuples to the nodes above them using
page granularity

• Every plan node above such a scan is part of a
partial plan, until parallelism is terminated by a
Gather or Gather Merge node

Parallel-oblivious hash joins
in PostgreSQL 9.6 & 10

• A Hash Join node can appear in a partial plan

• It is not “parallel aware”, meaning that it isn’t doing
anything special to support parallelism: if its outer plan
happens to be partial, then its output will also be partial

• Problem 1: the inner plan is run in every process, and a
copy of the hash table is built in each

• Problem 2: since there are multiple hash tables with
their own ‘matched’ flags, we can’t allow full or right
outer joins to be parallelised

Amdahl’s outlaw
• Parallelising the probe phase but not

the build phase sounds a bit like a
classic ‘Amdahl’s law’ situation…

• The effect may be worse than merely
limiting potential speed-up: running
N copies of the same plan generates
contention on various resources, and
storing the clone hash tables takes
memory away from other sessions

• These are externalities not included
in our costing model

Approaches

• Partition-wise join (in development)

• Dynamic repartitioning (various strategies exist)

• Shared hash table (proposed)

Which?
• Partition-wise joins work with parallel-oblivious join operators,

but requires the user to have declared suitable partitions

• State-of-the-art cache-aware repartitioning algorithm “radix
join” adds a costly multi-pass partitioning phase, minimising
cache misses during probing

• Several researchers claim that a simple shared hash table is
usually about as good, and often better in skewed cases[1]
[2], despite cache misses; not everyone agrees[3]

• The bar for beating a no-partition shared hash table seems
very high, in terms of engineering challenges

Proposal: shared hash table
• Tuples and hash table stored in memory from new ‘DSA’

allocator; special relative pointers must be used

• Insertion into buckets using compare-and-swap

• Wait for all peers at key points — in common case just end of
build, but in multi-batch case more waits — using a ‘barrier’ IPC
mechanism

• Needs various shared infrastructure: shared memory allocator
(DSA), shared temporary files, shared tuplestores, shared record
typmod registry, barrier primitive + condition variable

• Complications relating to leader process’s dual role

 SELECT COUNT(*)
 FROM simple r
 JOIN simple s USING (id)
 JOIN simple t USING (id)
 JOIN simple u USING (id);

 Finalize Aggregate (cost=1228093.57..1228093.58 rows=1 width=8) (actual time=24324.455..24324.456 rows=1 loops=1)
 -> Gather (cost=1228093.15..1228093.56 rows=4 width=8) (actual time=24010.300..24324.433 rows=5 loops=1)
 Workers Planned: 4
 Workers Launched: 4
 -> Partial Aggregate (cost=1227093.15..1227093.16 rows=1 width=8) (actual time=24004.404..24004.405 rows=1 loops=5)
 -> Hash Join (cost=925007.40..1220843.10 rows=2500020 width=0) (actual time=19254.859..23819.648 rows=2000000 loops=5)
 Hash Cond: (r.id = u.id)
 -> Hash Join (cost=616671.60..850006.80 rows=2500020 width=12) (actual time=12700.426..15914.957 rows=2000000 loops=5)
 Hash Cond: (r.id = t.id)
 -> Hash Join (cost=308335.80..479170.50 rows=2500020 width=8) (actual time=6255.527..8065.931 rows=2000000 loops=5)
 Hash Cond: (r.id = s.id)
 -> Parallel Seq Scan on simple r (cost=0.00..108334.20 rows=2500020 width=4) (actual time=0.010..358.957 rows=2000000 loops=5)
 -> Hash (cost=183334.80..183334.80 rows=10000080 width=4) (actual time=6188.294..6188.294 rows=10000000 loops=5)
 Buckets: 16777216 Batches: 1 Memory Usage: 482635kB
 -> Seq Scan on simple s (cost=0.00..183334.80 rows=10000080 width=4) (actual time=0.062..2401.128 rows=10000000 loops=5)
 -> Hash (cost=183334.80..183334.80 rows=10000080 width=4) (actual time=6376.765..6376.765 rows=10000000 loops=5)
 Buckets: 16777216 Batches: 1 Memory Usage: 482635kB
 -> Seq Scan on simple t (cost=0.00..183334.80 rows=10000080 width=4) (actual time=0.051..2484.348 rows=10000000 loops=5)
 -> Hash (cost=183334.80..183334.80 rows=10000080 width=4) (actual time=6478.513..6478.513 rows=10000000 loops=5)
 Buckets: 16777216 Batches: 1 Memory Usage: 482635kB
 -> Seq Scan on simple u (cost=0.00..183334.80 rows=10000080 width=4) (actual time=0.116..2546.278 rows=10000000 loops=5)

Total memory usage = ~500MB * 3 * 5 = ~7.5GB

 Finalize Aggregate (cost=607466.61..607466.62 rows=1 width=8) (actual time=11247.154..11247.154 rows=1 loops=1)
 -> Gather (cost=607466.19..607466.60 rows=4 width=8) (actual time=10998.218..11247.133 rows=5 loops=1)
 Workers Planned: 4
 Workers Launched: 4
 -> Partial Aggregate (cost=606466.19..606466.20 rows=1 width=8) (actual time=10989.275..10989.276 rows=1 loops=5)
 -> Parallel Hash Join (cost=426256.41..600216.14 rows=2500020 width=0) (actual time=4842.483..10790.433 rows=2000000 loops=5)
 Hash Cond: (r.id = u.id)
 -> Parallel Hash Join (cost=284170.94..436255.49 rows=2500020 width=12) (actual time=3202.773..7364.864 rows=2000000 loops=5)
 Hash Cond: (r.id = t.id)
 -> Parallel Hash Join (cost=142085.47..272294.84 rows=2500020 width=8) (actual time=1624.433..3941.708 rows=2000000 loops=5)
 Hash Cond: (r.id = s.id)
 -> Parallel Seq Scan on simple r (cost=0.00..108334.20 rows=2500020 width=4) (actual time=0.094..406.213 rows=2000000 loops=5)
 -> Parallel Shared Hash (cost=108334.20..108334.20 rows=2500020 width=4) (actual time=1594.475..1594.475 rows=2000000 loops=5)
 Buckets: 16777216 Batches: 1 Memory Usage: 522336kB
 -> Parallel Seq Scan on simple s (cost=0.00..108334.20 rows=2500020 width=4) (actual time=0.048..460.714 rows=2000000 loops=5)
 -> Parallel Shared Hash (cost=108334.20..108334.20 rows=2500020 width=4) (actual time=1553.354..1553.354 rows=2000000 loops=5)
 Buckets: 16777216 Batches: 1 Memory Usage: 522368kB
 -> Parallel Seq Scan on simple t (cost=0.00..108334.20 rows=2500020 width=4) (actual time=0.051..462.983 rows=2000000 loops=5)
 -> Parallel Shared Hash (cost=108334.20..108334.20 rows=2500020 width=4) (actual time=1607.306..1607.306 rows=2000000 loops=5)
 Buckets: 16777216 Batches: 1 Memory Usage: 522304kB
 -> Parallel Seq Scan on simple u (cost=0.00..108334.20 rows=2500020 width=4) (actual time=0.115..468.530 rows=2000000 loops=5)

Total memory usage = ~500MB * 3 = ~1.5GB

Joins

Hash Tables

Simple Hash Joins

Multi-Batch Hash Joins

Parallel Hash Joins

Open Problems

Questions

Memory Escape Valve?
• If extra rounds of adaptive partitioning fail to reduce

the hash table size, we stop trying to do that and
continue building the hash table (“ugly”), hoping the
machine can take it (!)

• Switching to a sort/merge for a problematic partition
seems like a solution, but it cannot handle every case
(outer join with some non-mergejoinable join
conditions)

• Invent an algorithm for processing the current batch in
multiple passes, but how to unify matched bits?

Bloom filters?

• Could we profitably push Bloom filters from the
hash table down to the outer scan?

• Could we use Bloom filters to filter the data
written to outer relation batch files?

N-join peak memory?
join

join U

join T

R S

join

join join

R S T U

join

R join

joinS

T U

Bushy peak: 
3..N-1 hash tables

Left-deep peak:  
N hash tables

Right-deep peak: 
2 hash tables

PostgreSQL convention: probe = outer = left, build = inner = right.
Many RDBMSs prefer left-deep join trees, but several build with the left relation and probe with the

right relation. They minimise peak memory usage while we maximise.

Tune chunk size?

• We want 32KB but the actual size that hits the system
malloc, after palloc overhead and chunk header, is 32KB
+ a smidgen, which eats up to 36KB of real space on
some OSes

• We should probably make this much bigger to dilute that
effect, or tune the size to allow for headers

• There may be other reasons to crank up the chunk size

Joins

Hash Tables

Simple Hash Joins

Multi-Batch Hash Joins

Parallel Hash Joins

Open Problems

Questions

References

• [1] Design and Evaluation of Main Memory Hash
Join Algorithms for Multi-core CPUs, 2011

• [2] Andy Pavlo’s CMU 15-721 2017 lecture
“Parallel Join Algorithms (Hashing)”, available on
Youtube + slides

• [3] Main-Memory Hash Joins on Multi-Core
CPUs: Tuning to the Underlying Hardware, 2013

