
© 2013 EDB All rights reserved. 1

Next-Generation Parallel Query

Robert Haas & Rafia Sabih

© 2017 EDB All rights reserved. 2

• v10 Improvements

• TPC-H Results
• TPC-H Analysis

• Thoughts for the Future

Overview

© 2017 EDB All rights reserved. 3

• Parallel Seq Scan
– fully supported from v9.6

• Index Scan
– supported for btree indexes from v10

• Index-Only Scan
– supported for btree indexes from v10

• Bitmap Heap Scan
– supported for all index types from v10, but the

underlying index scan(s) are not parallel

Parallel Table Scans

© 2017 EDB All rights reserved. 4

• In 9.6, we can do nested loops and hash joins in
parallel plans.

• In 10, we can also do merge joins.

• However, all joins are still parallel-oblivious.
– Proposed patch: parallel shared hash.

Parallel Joins

© 2017 EDB All rights reserved. 5

• Gather Merge merges sorted streams of tuples from all
participants into a single sorted result. (This combines
nicely with Parallel btree Index Scan and Parallel
Merge Join.)

• Uncorrelated subplans can now be executed in
workers (but each worker repeats the work, just like
each worker repeats the inner side of the join).

• Access to parallel query from PLs has been improved.
• Query text is now passed to workers.

Miscellaneous Improvements

© 2017 EDB All rights reserved. 6

• Experimental Setup
– RAM = 512 GB
– Number of Cores = 32

• Server Settings
– work_mem = 64 MB @ scale 20, 1 GB @ scale 300
– shared_buffers = 8GB
– effective_cache_size = 10GB
– random_page_cost = seq_page_cost = 0.1
– max_parallel_workers_per_gather = 4

• Database Setup
– PG 10 = Mar 9 snapshot + some bug fixes

– Additional indexes on l_shipmode, l_shipdate,
o_orderdate, o_comment

Performance Evaluation on TPC-H

© 2017 EDB All rights reserved. 7

TPC-H Results – Scale Factor 20

© 2017 EDB All rights reserved. 8

TPC-H Results – Scale Factor 20

v9.6 v10 % Speedup Used

Q2 29636.046 25559.894 13.75% GM, PI

Q3 74394.648 72530.694 2.5% GM

Q4 13706.858 12207.417 10.93% GM, PBHS

Q5 56856.605 53708.296 5.53% GM

Q6 27151.837 8839.169 67.44% PI

Q7 40237.334 39356.078 2.19% GM

Q8 7746.69 7953.079 -2.66% GM

Q10 62751.493 54007.126 13.93% GM, PBHS

Q12 46601.751 47829.493 -2.63% GM, PI

Q14 20025.412 11229.026 43.92% PI

Q16 51340.742 39242.498 23.56% Subplan

Q18 355953.923 290311.054 18.44% GM, PI

© 2017 EDB All rights reserved. 9

TPC-H Results – Scale Factor 300

© 2017 EDB All rights reserved. 10

TPC-H Results – Scale Factor 300

© 2017 EDB All rights reserved. 11

• Parallel Index Scan was a big win!
– Q6 is basically nothing but an index scan, so it

gets the most speedup.

– Q14 @ SF 20 has an index scan on the inner side
of a hash join; the outer side gets no faster, but the
index scan does.

– Q2 only manages to use parallel query for a small
part of the query, but that part got faster.

• Parallel Index-Only Scan was only chosen once (Q13
@ scale 300), but was a win (parallelism chosen
instead of not).

TPC-H Results – Analysis (1/4)

© 2017 EDB All rights reserved. 12

• Parallel Bitmap Heap Scan wins at scale factor 300.
– At scale factor 20, it's only chosen once (Q4), but

was a win when it was chosen.

– At scale factor 300, it's chosen three times (Q4,
Q6, Q14) and the queries get faster in every case.

– Q6 and Q14 speed up massively, because they
previously had no viable parallel plan.

– On other tests, Parallel Bitmap Heap Scan
sometimes regressed because the planner thinks
the extent to which the bitmap lossifies doesn't
matter. The planner is wrong! Fixed here by
choosing the “right” value for work_mem.

TPC-H Results – Analysis (2/4)

© 2017 EDB All rights reserved. 13

• Gather Merge got used a lot, but didn't always help.
– Good: The plan contains an expensive sort, and

Gather Merge lets us avoid it.
● Example: in Q17 @ scale 300, we Gather Merge 300

million rows and then perform Finalize GroupAggregate.

– Harmless: The plan contains a sort that was
already cheap. This is fairly common.

● Example: In Q8 @ scale 300, we Gather Merge 6 rows.
– Bad: Some workers take a long time to produce a

tuple, forcing other workers to wait.
● Example: In Q12 @ scale 300, nothing gets faster

despite Parallel Index Scan + Gather Merge; pipeline
stalls likely to blame.

TPC-H Results – Analysis (3/4)

© 2017 EDB All rights reserved. 14

• Parallel Merge Join is useful at the higher scale factor.
– In Q3 @ scale 300, the availability of Parallel

Merge Join allows a substantial chunk of the plan
to be parallelized where that otherwise wouldn't
have been practical.

– But could win in many more cases with Parallel-
Aware Merge Join.

• Relaxing subplan restrictions is also useful.
– Q16 @ scale 20 was using parallelism before, but

now it can be used by a much larger chunk of the
plan, hence the speedup.

– This area could benefit from a lot more work.

TPC-H Results – Analysis (4/4)

© 2017 EDB All rights reserved. 15

Amdahl's Law

S (s)= 1

(1− p)+ p
s

© 2017 EDB All rights reserved. 16

Hash Join
-> Finalize Aggregate
 -> Gather
 -> Partial Aggregate
 -> Partial Plan
-> Hash
 -> Non-Partial Plan

• If Finalize Aggregate itself is the slow part, then this plan isn't
helping us much.

• Also, we've terminated parallelism, so the surrounding hash join
can't be done in parallel.

Amdahl's Law – Parallel Aggregate

© 2017 EDB All rights reserved. 17

Gather
-> Hash Join
 -> Parallel Aggregate
 -> Partial Plan
 -> Parallel Shared Hash
 -> Partial Plan

• For a HashAggregate, it's fairly easy to see how to
implement this: use a shared hash table.

– Could contend if # of groups is small.
– Serialize/deserialize might be expensive.

• For a GroupAggregate, it's not so obvious how to make
this work.

– Merging sorted streams will likely contend badly.
– Also, Merge → Parallel Index Scan is a bad idea....

Better Parallel Aggregate?

© 2017 EDB All rights reserved. 18

• Current parallel joins work by having each worker join
some of the rows on the outer side of the join to all of
the rows on the inner side of the join.

• This means that parallel speedup is possible only on
one side of the join; the work on the other side has to
be redone by each worker (and may even be slower).

• Parameterized nested loops are an exception.

• The problem gets worse as the join nest gets deeper.
• Goal: Make joins parallel-aware so that each worker

needs to only scan part of each input.

Amdahl's Law – Parallel Join

© 2017 EDB All rights reserved. 19

• Parallel-aware hash join (patch exists)

Gather
-> Parallel Hash Join
 -> Partial Plan
 -> Parallel Shared Hash
 -> Partial Plan

• Parallel-aware merge join?

Amdahl's Law – Parallel-Aware Join

© 2017 EDB All rights reserved. 20

• Parallel-Aware:

– Partition-wise Join + Parallel Append

– Break into N sub-merge-joins using hashing
• Still Parallel-Oblivious, But Maybe Faster:

– Parallel Materialize

– Skip Scans

Better Parallel Merge Join - Ideas

© 2017 EDB All rights reserved. 21

• More Work on InitPlan/SubPlan Restrictions.
Parameter references make tables parallel-restricted.
Uncorrelated subplans are re-executed.

• Parallel Bitmap Index Scan. Parallelizing the heap
scan is good, but sometimes the index scan is quite
expensive.

Amdahl's Law – More Applications

© 2017 EDB All rights reserved. 22

• Need to improve costing for Parallel Bitmap Heap Scan
(ignores lossification).

• Need to investigate cost of Bitmap Heap Scan vs.
Bitmap Index Scan.

• Need to improve costing for HashAggregate
(sometimes picked even when Gather Merge +
GroupAggregate executes faster).

• Need to improve selectivity estimation (some estimates
are very, very bad).

• Need to improve algorithm for selecting the # of
workers.

Planner Problems

© 2017 EDB All rights reserved. 23

-> Merge Join (cost=54848846.88..62064940.91 rows=92 width=16)
(actual time=2241882.471..3255130.278 rows=1696742 loops=1)
 Merge Cond: ((lineitem.l_partkey = partsupp.ps_partkey) AND
(lineitem.l_suppkey = partsupp.ps_suppkey))
 Join Filter: ((partsupp.ps_availqty)::numeric > ((0.5 *
sum(lineitem.l_quantity))))
 Rows Removed by Join Filter: 3771

Awful Estimate

© 2017 EDB All rights reserved. 24

• Parallel query in PostgreSQL 10 is substantially
improved from PostgreSQL 9.6.

• But there's a lot more to do.

• Stay tuned.
• Please help.

Conclusions

© 2017 EDB All rights reserved. 25

Output: Thank You
Gather
 Workers Planned: 2
 Workers Launched: 2
 -> Parallel Index Scan on Common_phrases
 Index Cond: (value = 'Thank You')
 Filter: Language = 'English'

Thank You

	Presentation Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

