Beyond EXPLAIN

Query Optimization
From Theory To Code

Yuto Hayamizu
Ryoji Kawamichi

2016/5/20
PGCon2016 @ Ottawa

Hi st or |

Bef ore Rel

AQuerying wagphysical

ANeed to understand
physical organization

ANavigate query execution
by yourself

AWhich file is this
AHow are records | in
AWhich access path i
i What i s the best or
e

2016/5/20

c al

at

stor

for
j o

'y

onal

ed in?0

this ta
ning tab

bl e?0
| es o

é

Hi st ori cally

Bef ore Rel aRfibanml Rel at |

AQuerying washysical AQuerying islogical
ANeed to understand APhysical organization is
physical organization black-boxed
ANavigate query execution AJustdeclare what youwant
by yourself
AWhich file is this table stored g
AHow are records | inked?0

AWhich access path is fast for t
AWhat is the best order of joini

2016/5/20 3

Fill the Gap:Physicaland Logical

SELECT * FROMDEPT D, EMP E
WHERKE. D_ID = D.ID AND ...

Query Optimizer

A Storage I/O strategy
A Access path selection
A Join method selection
A Aggregation, sorting
A Resource allocation

A..

2016/5/20

If optimizer perfectly fills the gap...

We don' t need

222222222

Reality Is Tough

AOptimizer is NOT PERFECT

AGenerated plans are not always optimal, sometimes
far from optimal

AWe have to take care of physical behavior

AThat’' s why EXPLAIN is s

2016/5/20 6

2016/5/20

Go Beyond EXPLAIN

ADeeper understanding of optimization, better
control of your databases

ATheoretical fundamentals of query optimization
AFrom basic framework to cuttingedge technologies

APostgreSQL Optimizer implementation
AFocusing on basic scan and join methods
ABehavior observation with TPE€H benchmark

Outline

ATheory: Query Optimization Framework
ACode: PostgreSQL Optimizer
ATheory: CuttingEdge Technologies Overview

ASummary

2016/5/20

2016/5/20

Query Optimization Framework

ACost-based optimization
APlan selection with estimated execution cost

AMost of modern optimizers, including PostgreSQL,
are costbased

ARule-based optimization
APlan selection with heuristically rankedules
AEasyto produce the sameresult
AHard to evaluate wide variety of plans
AEx) Oracle (~109, Hive (~0.13)

Main Challenges in Costbased Optimization

ACost modelingis HARD
AOver head of CPU, |1/ O, memc

ACardinality estimationis HARD
AOut put size of scans, joir

AJoin ordering searchis HARD
A Combinatorial explosion of join ordering and access path
AExhaustive search is NPhard

2016/5/20 10

2016/5/20

System R optimizer (1979)

IBM Research Divisien, San Jose, California 95193

Access Path Selection
in a Relational Database Management System

P. Griffiths Selinger
M. M. Astrahan
D. D. Chamberlin
R. A. Lorie

" T. G. Price

ABSTRACT: In a high level query and data retrieval. Nor does a user specify in what

manipulation language such as SQL, requests order joins are to be performed. The
are non-procedurally, without System R optimizer chooses both join order
reference to access paths. This paper and an access path for each table in the
describes how System R chooses access paths SQL statement. many possible
for both simple (single relation) and choices, tha optimizer chooses +the one
comolax oueries (such as ieing). given a which minimizes "total access cost" for

A“ The

standar d”
A Cost estimation with 1/0 and CPU

A Cardinality estimation with table statistics
ABottom-up plan search

AMa ny

of

moder n

optR nsitzyel

APostgreSQL, MySQL, DB2, Oracle, ...

11

Cost/Cardinality Estimation

COST = [#page fetched] + W * [#storage API calls]

weight parameter

Al#page fetched],[# storage API calls]
are estimated with cost formula and following
statistics

A NCARD(T)... the cardinality of relation T

A TCARD(T) ... the number of pages in relation T
A ICARD(]) ... the number of distinct keys in index
A NINDX(I) ... the number of pages in index |

2016/5/20

12

Bottom-up Plan Search

ACandidate plans for single relation
AThe cheapest access path

AN-relation join ordering search
ASelect the cheapest plans for each relation
AThen, find optimal join orderings of every Zelation join

AThen, find optimal join orderings of every 3elation join
A ... until N-relation

2016/5/20

13

EXYA B C D

{A} {B} {C {D}
N N NN

EXYA B C D

{A, B}

{A} {B} {C {D}
AN N A

EXYA B C D

{A, By {AC {ADH B¢ {BD {CD]

(A (B} G} D}

EXYA B C D

{ABC} {A, B, D} {A, C, D} {BCD}

A R Y

{Am{AQ{Am{BQ'{Bm{cm

Vo Bl S N

%

EXYA B C D
{A, B, C, D}

RN

{ABQ””MBD} Uunn"{scm

A R Y

{Am{AQ{Am{BQ'{Bm{cm

Vo Bl S N

%

Volcano/Cascades (1993)

2016/5/20

The Volcano Optimizer Generator: Extensibility and Efficient Search

Goetz Graefe
Portland State University
graefe @ cs.pdx.edu

Abstract
Emerging database application domains demand not only
new functionality but also high performance. To satisfy
these two requirements, the Volcano project provides
efficient, extensible tools for query and request processing,
particularly for object-oriented and scientific database
systems. One of these tools is a new optimizer generator.
Data model, logical algebra, physical algebra, and optimi-
zation rules are translated by the optimizer generator into
nntimizer cource code (Comnared with our earlier FX-

William J. McKenna
University of Colorado at Boulder
bill @ cs.colorado.edu

First, this new optimizer generator had to be usable both in
the Volcano project with the existing query execution
software as well as in other projects as a stand-alone tool.
Second, the new system had to be more efficient, both in
optimization time and in memory consumption for the
search. Third, it had to provide effective, efficient, and
extensible support for physical properties such as sort ord-
er and compression status. Fourth, it had to permit use of
heuristics and data model semantics to guide the search
and to nrune futile narts of the search snace Finallv_ it

ATop-down transformational plan search
A Yet another optimization approach

ANot well knowna s
practice

Ex) SQL Server, Apache Hive (Apache Calcite€preenplum
Orca

AExtensible optimization framework

“SRstyleem but

W |

del

y

19

Extensible Optimization Framework

Query OptimizerGenerator

AGeneralized expression of query plan not limited
to relational data model

AUsers (optimizer developers) defines actual
Implementations:
ALogical operator ... corresponds to relational algebra

APhysical algorithm ... corresponds to scan & join
methods such as sequential scan, index scan, hash

join, nested loopjoin

2016/5/20

Top-down Transformational Search

ASt art s

from an

AGenerate alternative plans with:
A) Logical operator transformation
B) Physical algorithm selection

C) Enforcing sorting order

Example: 3vay join with projection PrIOJ'
Join
Join Select T
Select R| |Select S
Proj
Jolin
Select R Join

2016/5/20

Select S

Select T

Il ni ti al
Join
Join Select T
Proj Select S
|
Select R

09

21

Top-down Transformational Search

ASt art s

from an
AGenerate alternative plans with:

A) Logical operator transformation
B) Physical algorithm selection

C) Enforcing sorting order

Example: 3vay join with projection PrIOJ'
Join
Join Select T

Select R| |Select S

Proj Proj

Jolin Jc;in

secilolal (Select T Join
SegScan R}SeqgScan S Select R Select S

2016/5/20

n

t

a l

09

22

Top-down Transformational Search

Example: 3vay join with projection

ASt art s

2016/5/20

Proj

Join

Join

Select T

Select R

Select S

from an |

AGenerate alternative plans with:
A) Logical operator transformation
B) Physical algorithm selection
C) Enforcing sorting order

nit

Proj

Join

Join

Select T

Select R

Select S

a l

09

merge join of R and S is possible now

23

222222222

Benefits of Top-down approach

//EE:\A\;

£ = = =

/N /\ X X
B S g o
¥ X v
&I:I

APossible to intentionally limit search space
A Effective pruning with branchand-bound
ALimit search space with search time deadline

Cost-based Optimization Basics

Two major cost based optimization style

ASystemR
A Cost modeling with statistics
ABottom-up search

AVolcano/Cascades

A Extensible optimizer generator
ACost esti mation I S user'’'s res

ATop-down transformational search

2016/5/20 25

2016/5/20

Outline

ACode: PostgreSQL Optimizer
ATheory: CuttingEdge Technologies Overview

ASummary

26

2016/5/20

PostgreSQL Optimizer

Sys-Resmt y | e opti mi zati on
ABottom-up plan search with dynamicprogramming
ACPU and I/O operation based cost modeling

Cost = Cseqllseq + CrandMrand T Ctuptup T

=C-N
A seq_page cost A Cardinality estimation with
A random_page_cost statistics
A cpu_tuple_cost A Cost formula for each plan type

A cpu_index_tuple cost A SeqScan, IndexScan
A cpu_operator_cost

A (parallel_tuple_cost) MergeJoin, ...

A NestLoopJoin, HashJoin,

27

Detailed Look At Basic Scan Types

A Efficient for accessing large potion of tables

AEfficient for accessing a fraction oflata

Execution cost A

Query selectivity
>

2016/5/20

cost_seqscan ()
@ptimizer/path/

N of SegScan

Ngseq = (# pages in a table)
INtup = (# tuples in a table)

[WHERE AND AND J

n()p = #qual _operator
= (#tuples) (weight factor of*)

+ (#tuples) (weight factor of3)
+

costsize.c

29

N of IndexScan

Consists of:

(A) CPU cost of searching B-tree

(B) CPU cost of scanning index tuples in leaf pages
(C) I/O cost of leaf pages

(D) I/O cost of heap pages

(E) CPU cost of scanning heap tuples

N of IndexScan

(A) B*-tree search

Nop +=log,(#index_tupley ///\}-
ST

/O cost of internal pages
Assumed to be always cached in the buffe - -

(B) Scanning index tuples in leaf pages

Nitup = #ual_operator
#Hleaf pages #ituple per page U
Selectivityl

Comes from statistics

2014/12/04 31

2014/12/04

N of IndexScan

(C) I/O cost of index leaf pages

Nyand T Yéffective_cache_size : #eaf_page}a

Mackertand Lohman functionYao function
I/O count estimation with consideration of buffer caching

min (2}23}:—‘5—N;cr . P) (P<B)

Y(N,P,0,B) = { 2N

2PB
(P>B o< 522Es)

2P+ No
2PB P-B

B+(NG—ZP_B) P

(P>BAU>%)

/O count

32

N of IndexScan

(D) 1/O cost of heap pages

U= 0: I/O pattern is random

—>

—>

Correlation between index and heap orderitd:

U= 1:1/O pattern is sequential

—> —>

p—>

Nseq +=F #match_pages

Nrand+= (1— UZ)

#match tuples

(E) CPU cost of scanning heap tuples
Estimate the number of scanned tuples front

2014/12/04

33

Detalled Look At Join Methods

A Efficient for joining large number of records
AUsually combined withsequential scans

A Efficient for joining small number of records

AUsually combined withindex scansor small table
sequential scans

2016/5/20 34

N of HashJoin

" DX Hash Join)

N of HashJoin

Build phase

4) :
}{ Hash Join ACost += Cost(lnner)
nop +=#jual_ op #inner_tuples

Ttup +=#inner_tuples /\—

Hashing cost

Outer R Inner S

2014/12/04

2014/12/04

N of HashJoin

" DX<| Hash Join

.

/

Build phase

ACost += Cost(inner)
TNop +=#ual_op #inner_tuples
Ttup +=#inner_tuples

37

N of HashJoin

i) (NS Build phase

ash Jgin) ACost += Cost(innen+ C - N

TNop +=#ual_op #inner_tuples
Ttup +=#inner_tuples

////// ’ Probe phase
poost = Costoust (8-

Nop +=tual op (1 +#bucket size 0.5)

#outer tuples N

Hashing & table lookup (bucket search) cos

ntup +=#match_tuples

2014/12/04 38

N of HashJoin

#buckets: 2

tuple '

16 records

2014/12/04

||J

AR

!

[tuple

4 tuples are compared for
lookup in average

Estimated cost of #vay HashJoin

4.E+07
4.E+07
3.E+07

3.E+07
2.E+07
2.E+07
1.E+07
5.E+06

0.E+00
10000

100000

1000000
of records

10000000 100000000

#buckets : 4

!

m;lw | tuple I“

\I/

2 tuples are compared for lookup

in average

39

N of NestLoopJoin

R S

outer Inner

.o o

sl

rl

r2

m

r3

\ ReScars with

r4

N

sS2

s3

sl

A N

S2

s3

N of NestLoopJoin

. o T

s3
outer Inner

AWhen #outer tuples= 1
Cost = Costfuter) + Cost{nnen + C - N

Ntup +=#nner_tuples

Nop +=#ual_operator #nner_tuples

2014/12/04

N of NestLoopJoin

sl
e < =
r

s3
R S _

outer inner sl
r3 \ ReScars with ¥ s2

r4 s3
AWhen #outer tuples>1 -

Cost = Costjuter) + Cost{nner) + C - N
+ (#outer _tuples-1) CostReScannner)

Higher buffer hit ratio irReScan
HCost ofReScarms lower than cost oindexScan

Ntup +=#nner_tuples #outer_tuples
Nop +=4#hual_operator #inner_tuples #outer_tuple

See How It Works

ATPC-H Benchmark

A Specification and tools for benchmarkinglata
warehouse workload

A Open source implementation: DBT3, pg_tpch
ASchema, data generation rules and queries

AExperiments with 100GB
AScale Factor = 100

2016/5/20

43

Experimental Setup

ADell R720xd

AXeon (2sockets, 16cores)
Ax24 NL-SAS HDD

AWith PostgreSQL 9.5

ADefault cost parameter settings
ASeqScan& HashJoin

A enable_segscan =on, enable_ hashjoin
and disables other methods

AlndexScan & NestLoopJoin

A enable indexscan =on, enable nestloop
and disables other methods

2016/5/20

= on

= on

44

TPC-H Q.1: The Simplest Case

SELECT count(*), ... FROM lineitem
WHERE shipdate = BETWEEN [X] AND [Y]

Estimated cost

5.E+08
5.E+07
5.E+06 A Good trend estimation for each
5.E+05 methOd
1 10 100 1000
o Selectivity (I_shipdate) -~ A Estimated break -event point is
Execution time (sec)
0000 errorneus
(> A IndexScan should be more
1000 expensive (need parameter
calibration)
100

10
1 10 100 1000

2016/5/20 Selectivity(| shipdate)

HashJoin

NestLoop

O\ N

TPCH Q.3 =

lineitem

HashJoin NestLoop | [IndexScan

/

\ / \ lineitem

SegScan
orders

Estimated cost

1ewg| | Hashoin+SeqScan .

1.E+06

1.E+04]

1.E+02

1.E+00

1 10 100 1000 10000 100000 1000000

Selgctivi
Execution time (sec) %

10000
1000 HashJoin+SeqgScan

100

10

1

1 10 100 1000 10000 1000001000000

2016/5/20 Selectivity

Hash IndexScan IndexScan
| customer orders
SegScan
customer

SELECT count(*), ...

FROM customer, orders, lineitem
WHERE custkey = o _custkey AND
o_orderkey = | orderkey AND

c_custkey < [X] AND
c_mktsegment © p- ! #() . %92

Similar result as in Q.1
A Good trend estimation for each

A Erroneous break -event point
without parameter calibration

46

More Complex Case
TPC-H Q.4: SemiJoin Query

Estimated cost
1.E+09

1.E+08
1.E+07
1.E+06

1.E+05

1 10 100 1000

_ _ Selectivity
Execution time (sec)

100000

10000
1000

100
1 10 100 1000

2016/5/20 Selectivity

10000

10000

SELECT count(*), ...
FROM orders
WHERE
o_orderdate | 7 ps@ydksR ! . $
o_orderdate , p sWHEsR

I ET OAOOAI
EXISTS(
SELECT * FROMlineitem
WHERE orderkey = o_orderkey
ANDI_commitdate < |_receiptdate)

pABID |1

APlan selection for semi
join tend to be unstable

a7

More Complex Case
TPC-H Q.22: AnttJoin Query

Estimated cost
1.E+11

1.E+10
1.E+09
1.E+08
1.E+07

1.E+06
1.E+00 1.E+02 1.E+04 1.E+06 1.E+08

Selectivity

Execution time (sec)
10000

1000
100
10

1
1.E+00 1.E+02 1.E+04 1.E+06 1.E+08
2016/5/20 Selectivity

SELECT count(*), ...
FROM supplier , lineitem 11, orders, nation
WHERE_suppkey =11.I_suppkey AND
o_orderkey =11.1_orderkey AND

o_orderstatus ='F' AND
[1.]_receiptdate > |1.|_commitdate AND
EXISTS (

SELECT* FROMineitem |2
WHERE 12.|_orderkey = I1.|_orderkey
ANDI2.l_suppkey <> 11._suppkey)
AND NOT EXIST (
SELECT * FROMlineitem I3
WHERE 13.I_orderkey = 11.1_orderkey
AND I3.]_suppkey <> I1.I_suppkey
AND I3.1_receiptdate > 13.|_commitdate)
ANDs_nationkey = n_nationkey
ANDn_name” p*1 0! . A

ADifficulties in overall cost
trend estimation

48

2016/5/20

Summary: PostgreSQL
Optimizer

ADetailed look at cost modeling of basic methods

ASegScan IndexScan
AHashJoin NestedLoopJoin

AObservation with TPGH benchmark

AGood cost trend estimation for simple join queries
A Erroneous cheapest plan selection without parameter tuning

ADifficulties with semi-join and anti-join queries

49

2016/5/20

Outline

ATheory: CuttingEdge Technologies Overview
ASummary

Cutting- Edge Technologies

ATraditional optimizati o
coriney] [costmoce g%:
> planspe;ge
(SQL) guery plan

A“ Ret hi nk t hsemiracraoamt r act ”
AFeedback from previous execution
ADynamic integration with execution

2016/5/20 51

Mid-query Re optimization

[N.KabraS 0 ®I f &> { L |

ADetects sub-optimality of executing query plan

AQuery plans are annotated for later estimation
Improvement

ARuntime statistics collection

A Statistics collector probes are inserted into operators of
executing query plan

APlan modification strategy
ADiscard current execution and reoptimize whole plan

ARe-optimizer only subtree of the plan that are not
started yet

ASa_ve partial execution result and generate new SQL
using the result

2016/5/20 52

Plan Bouquet

[A.DuttS G o f &=

AGenerate a set ofplans for each selectivity range

AEstimation improvementwith runtime statistics
collection

AEvaluation with PostgreSQL

2016/5/20

[L

53

Bounding Impact of Estimation Error

[T. Neumann et.al., BT@onf¥Ym

A“Uncertainty” analysi s
A Optimality sensitivity to estimation error

AExecutepartially to reduce uncertainty

2016/5/20

2016/5/20

Outline

ASummary

2016/5/20

Summary

ACost-based optimization framework
ASystem R style bottom up optimization
AVolcano style topdown optimization

ADetailed look at PostgreSQL optimizer
A Cost modeling of basic scan and join method
A Experiment with TPGH benchmark

ABrief overview of cuttingedge technologies

56

