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Before Relational é

ÅQuerying was physical

ÅNeed to understand
physical organization

ÅNavigate query execution
by yourself
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DEPT
EMP

PROJ

ñWhich file is this table stored in?ò

ñHow are records linked?ò

ñWhich access path is fast for this table?ò

ñWhat is the best order of joining tablesò

é

Historically …
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After Relational …

DEPT
EMP

PROJ

ñWhich file is this table stored in?ò

ñHow are records linked?ò

ñWhich access path is fast for this table?ò

ñWhat is the best order of joining tablesò

é

ÅQuerying is logical

ÅPhysical organization is 
black-boxed

ÅJust declare what you want

Historically …



Fill the Gap: Physicaland Logical
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SELECT * FROM DEPT D, EMP E

WHERE E. D_ID = D. ID AND ...

ÅStorage I/O strategy

ÅAccess path selection

ÅJoin method selection

ÅAggregation, sorting

ÅResource allocation

Å...

Query Optimizer



If optimizer perfectly fills the gap...
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We don’t need EXPLAIN 



Reality Is Tough

ÅOptimizer is NOT PERFECT
ÅGenerated plans are not always optimal, sometimes 

far from optimal

ÅWe have to take care of physical behavior

ÅThat’s why EXPLAIN is so much explained
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Go Beyond EXPLAIN

ÅDeeper understanding of optimization, better 
control of your databases

ÅTheoretical fundamentals of query optimization
ÅFrom basic framework to cutting-edge technologies

ÅPostgreSQL Optimizer implementation
ÅFocusing on basic scan and join methods

ÅBehavior observation with TPC-H benchmark
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Outline

ÅIntroduction

ÅTheory: Query Optimization Framework

ÅCode: PostgreSQL Optimizer

ÅTheory: Cutting-Edge Technologies Overview

ÅSummary
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Query Optimization Framework

ÅCost-based optimization
ÅPlan selection with estimated execution cost

ÅMost of modern optimizers, including PostgreSQL, 
are cost-based

ÅRule-based optimization
ÅPlan selection with heuristically ranked rules

ÅEasy to produce the same result

ÅHard to evaluate wide variety of plans

ÅEx) Oracle (~10g), Hive (~0.13)
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Main Challenges in Cost-based Optimization

ÅCost modeling is HARD
ÅOverhead of CPU, I/O, memory access, network, …

ÅCardinality estimation is HARD
ÅOutput size of scans, joins, aggregations, …

ÅJoin ordering search is HARD
ÅCombinatorial explosion of join ordering and access path

ÅExhaustive search is NP-hard
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System-R optimizer (1979)

Å“The standard”
ÅCost estimation with I/O and CPU 

ÅCardinality estimation with table statistics

ÅBottom-up plan search

ÅMany of modern optimizers are “System-R style”
ÅPostgreSQL, MySQL, DB2, Oracle, ...
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Cost/Cardinality Estimation

Å[#page fetched ],[# storage API calls]
are estimated with cost formula and following 
statistics
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CPU costI/O cost

COST = [#page fetched] + W * [#storage API calls]

weight parameter

ÅNCARD(T) ... the cardinality of relation T
ÅTCARD(T) ... the number of pages in relation T
ÅICARD(I) ... the number of distinct keys in index I
ÅNINDX(I) ... the number of pages in index I



Bottom-up Plan Search

ÅCandidate plans for single relation
ÅThe cheapest access path

ÅN-relation join ordering search
ÅSelect the cheapest plans for each relation

ÅThen, find optimal join orderings of every 2-relation join

ÅThen, find optimal join orderings of every 3-relation join
Å... until N-relation
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Volcano/Cascades (1993)

ÅTop-down transformational plan search
ÅYet another optimization approach
ÅNot well known as “System-R style”, but widely used in 

practice
Ex) SQL Server, Apache Hive (Apache Calcite), Greenplum
Orca

ÅExtensible optimization framework
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Extensible Optimization Framework

Query Optimizer Generator

ÅGeneralized expression of query plan not limited 
to relational data model

ÅUsers (optimizer developers) defines actual 
implementations:
ÅLogical operator ... corresponds to relational algebra

ÅPhysical algorithm ... corresponds to scan & join 
methods such as sequential scan, index scan, hash 
join, nested loop join
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Top-down Transformational Search

ÅStarts from an initial “logical plan”

ÅGenerate alternative plans with:
A) Logical operator transformation
B) Physical algorithm selection
C) Enforcing sorting order
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Join Select T

Join

Select R Select S

Proj

Join

Select T

JoinSelect R

Select S

Proj

Change join ordering

Join Select T

Join

Select R

Select SProj

Projection push down

Example: 3-way join with projection
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Join Select T

Join

Select R Select S

ProjExample: 3-way join with projection

HashJoin Select T

Join

SeqScan R SeqScan S

Proj

Join IdxScan T

Join

Select R Select S

Proj
Χ



Top-down Transformational Search

ÅStarts from an initial “logical plan”

ÅGenerate alternative plans with:
A) Logical operator transformation
B) Physical algorithm selection
C) Enforcing sorting order
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Join Select T

Join

Select R Select S

Proj

Example: 3-way join with projection

Join Select T

Join

Sort Sort

Proj

Select R Select S

Enforce sorting order

merge join of R and S is possible now



Benefits of Top-down approach

ÅPossible to intentionally limit search space
ÅEffective pruning with branch-and-bound

ÅLimit search space with search time deadline

2016/5/20 24



Cost-based Optimization Basics

Two major cost-based optimization style

ÅSystem-R
ÅCost modeling with statistics

ÅBottom-up search

ÅVolcano/Cascades
ÅExtensible optimizer generator
ÅCost estimation is user’s responsibility

ÅTop-down transformational search
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Outline

ÅIntroduction

ÅTheory: Query Optimization Framework

ÅCode: PostgreSQL Optimizer

ÅTheory: Cutting-Edge Technologies Overview

ÅSummary
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PostgreSQL Optimizer

“System-R style” optimization
ÅBottom-up plan search with dynamic programming
ÅCPU and I/O operation based cost modeling
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Seq. I/O Random I/O CPU cost per tuple

Cost of single operation
Å seq_page_cost
Å random_page_cost
Å cpu_tuple_cost
Å cpu_index_tuple_cost
Å cpu_operator_cost
Å (parallel_tuple_cost )

Estimated number of each operation
Å Cardinality estimation with 

statistics
Å Cost formula for each plan type

Å SeqScan, IndexScan
Å NestLoopJoin , HashJoin, 

MergeJoin, ...



Detailed Look At Basic Scan Types

ÅSequential scan
ÅEfficient for accessing large potion of tables

ÅIndex scan
ÅEfficient for accessing a fraction of data
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Execution cost

Query selectivity

Sequential scan



of SeqScan

29

= (# pages in a table)

= (# tuples in a table)

= #qual_operator
= (#tuples) (weight factor of A)

+ (#tuples) (weight factor of B)

+ 

WHERE   AND AND A B

cost_seqscan ()
@optimizer/path/ costsize.c



of IndexScan

Consists of:

(A) CPU cost of searching B+-tree

(B) CPU cost of scanning index tuples in leaf pages

(C) I/O cost of leaf pages

(D) I/O cost of heap pages

(E) CPU cost of scanning heap tuples
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of IndexScan

(A)B+-tree search

(B) Scanning index tuples in leaf pages
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+= log2(#index_tuples)

I/O cost of internal pages
Assumed to be always cached in the buffer

+= #qual_operator

#leaf_pages #ituple_per_page ů

Selectivity ů
Comes from statistics



Mackertand Lohman functionYao function
I/O count estimation with consideration of buffer caching

of IndexScan

(C) I/O cost of index leaf pages
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+= Y(effective_cache_size , #leaf_pages)
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of IndexScan

(D) I/O cost of heap pages

(E) CPU cost of scanning heap tuples

・ Estimate the number of scanned tuples from ů

2014/12/04 33

+= Ŭ2 #match_pages

Correlation between index and heap ordering: Ŭ

Ŭ= 0 : I/O pattern is random Ŭ= 1 : I/O pattern is sequential

+= (1-Ŭ2) #match_tuples



Detailed Look At Join Methods

ÅHash join
ÅEfficient for joining large number of records

ÅUsually combined with sequential scans

ÅNested Loop Join
ÅEfficient for joining small number of records

ÅUsually combined with index scansor small table 
sequential scans
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of HashJoin
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of HashJoin

Build phase

ÅCost += Cost(inner)
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+= #qual_op #inner_tuples

+= #inner_tuples

Hashing cost



of HashJoin
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Build phase

ÅCost += Cost(inner)
+= #qual_op #inner_tuples

+= #inner_tuples



of HashJoin
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Build phase

ÅCost += Cost(inner)+

Probe phase

ÅCost += Cost(outer)+

+= #qual_op #inner_tuples

+= #inner_tuples

+= #qual_op (1 + #bucket_size 0.5)
#outer_tuples

+= #match_tuples

Hashing & table lookup (bucket search) cost



recordrecordrecordrecordrecordrecordrecordrecordrecordrecordrecordrecordrecordrecordrecordtuple

of HashJoin
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#buckets: 2 #buckets : 4

build

4 tuples are compared for 
lookup in average 2 tuples are compared for lookup 

in average
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Estimated cost of 2-way HashJoin

# of records

16 records

recordrecordrecordrecordrecordrecordrecordtuple

recordrecordrecordrecordrecordrecordrecordtuple

recordrecordrecordtuple

recordrecordrecordtuple

recordrecordrecordtuple

recordrecordrecordtuple



of NestLoopJoin
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R S Scan R r2

r1

r3

r4

Scan Swith r1

s1

s2

s3

ReScanSwith r2

s1

s2

s3

outer inner



of NestLoopJoin

ÅWhen #outer_tuples= 1
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R S Scan R

r1
Scan Swith r1

s1

s2

s3

outer inner

Cost = Cost(outer) + Cost(inner) +

+= #inner_tuples

+= #qual_operator #inner_tuples



of NestLoopJoin

ÅWhen #outer_tuples> 1

R S Scan R r2

r1

r3

r4

Scan Swith r1

s1

s2

s3

ReScanSwith r2

s1

s2

s3

outer inner

Cost = Cost(outer) + Cost(inner) + 

+ (#outer_tuples- 1) Cost(ReScaninner)

Higher buffer hit ratio in ReScan
Ҧ Cost of ReScanis lower than cost of IndexScan

+= #inner_tuples #outer_tuples

+= #qual_operator #inner_tuples #outer_tuples



See How It Works

ÅTPC-H Benchmark
ÅSpecification and tools for benchmarkingdata 

warehouse workload
ÅOpen source implementation: DBT-3, pg_tpch

ÅSchema, data generation rules and queries

ÅExperiments with 100GB
ÅScale Factor = 100
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Experimental Setup

ÅDell R720xd
ÅXeon (2sockets, 16cores)
Åx24 NL-SAS HDD

ÅWith PostgreSQL 9.5
ÅDefault cost parameter settings
ÅSeqScan& HashJoin
Åenable_seqscan = on, enable_hashjoin = on

and disables other methods

ÅIndexScan & NestLoopJoin
Åenable_indexscan = on, enable_nestloop = on

and disables other methods
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TPC-H Q.1: The Simplest Case
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Estimated cost

Selectivity ( l_shipdate )

IndexScan

SeqScan

10
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1 10 100 1000

Execution time (sec)

Selectivity( l_shipdate )

IndexScan

SeqScan

ÅGood trend estimation for each 
method

ÅEstimated break -event point is 
errorneus
Å IndexScan should be more 

expensive (need parameter 
calibration)

SELECT count(*), ... FROM lineitem
WHERE l_shipdate BETWEEN [X] AND [Y]



TPC-H Q.3
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Estimated cost

SeqScan
customer

SeqScan
orders

SeqScan
lineitem

Hash

HashJoin

HashJoin

IndexScan
orders

IndexScan
lineitem

NestLoop

NestLoop

IndexScan
customer

Execution time (sec)

Selectivity
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1
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Selectivity

NestLoop+IndexScan

HashJoin+SeqScan

NestLoop+IndexScan

HashJoin+SeqScan Similar result as in Q.1

ÅGood trend estimation for each

ÅErroneous break -event point 
without parameter calibration

SELECT count(*), ...
FROM customer, orders, lineitem
WHERE c_custkey = o_custkey AND

o_orderkey = l_orderkey AND
c_custkey < [X] AND
c_mktsegment ˮ ƥ-!#().%29ƦƘ



100

1000

10000

100000

1 10 100 1000 10000

More Complex Case
TPC-H Q.4: Semi-Join Query

ÅPlan selection for semi-
join tend to be unstable
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1.E+08

1.E+09

1 10 100 1000 10000

HashJoin+SeqScan

NestLoop+IndexScan

Estimated cost

Execution time (sec)

HashJoin+SeqScan

NestLoop+IndexScan SELECT count(*), ...
FROM orders
WHERE

o_orderdate ˲ˮ ƥʦʮʮʪ- 01-ʣʦƦ !.$
o_orderdate ˱ ƥʦʮʮʪ- 01-ʣʦƦ

˩ ÉÎÔÅÒÖÁÌ ƥʨ ÍÏÎÔÈƦAND
EXISTS(

SELECT * FROM lineitem
WHERE l_orderkey = o_orderkey

AND l_commitdate < l_receiptdate )

Selectivity



1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08

More Complex Case
TPC-H Q.22: Anti-Join Query

ÅDifficulties in overall cost 
trend estimation
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Selectivity

1
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Estimated cost

Execution time (sec)

Selectivity

HashJoin+SeqScan

NestLoop+IndexScan

HashJoin+SeqScan

NestLoop+IndexScan

SELECT count(*), ... 
FROM supplier , lineitem l1 , orders, nation 
WHERE s_suppkey = l1.l_suppkey AND

o_orderkey = l1.l_orderkey AND
o_orderstatus = 'F' AND
l1.l_receiptdate > l1.l_commitdate AND

EXISTS (
SELECT * FROM lineitem l2

WHERE l2.l_orderkey = l1.l_orderkey
AND l2.l_suppkey <> l1.l_suppkey)

AND NOT EXIST (
SELECT * FROM lineitem l3

WHERE l3.l_orderkey = l1.l_orderkey
AND l3.l_suppkey <> l1.l_suppkey
AND l3.l_receiptdate > l3.l_commitdate)

AND s_nationkey = n_nationkey
AND n_nameˮ ƥ*!0!.ʎ 



Summary: PostgreSQL 
Optimizer
ÅDetailed look at cost modeling of basic methods
ÅSeqScan, IndexScan

ÅHashJoin, NestedLoopJoin

ÅObservation with TPC-H benchmark
ÅGood cost trend estimation for simple join queries
ÅErroneous cheapest plan selection without parameter tuning

ÅDifficulties with semi-join and anti- join queries
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Outline

ÅIntroduction

ÅTheory: Query Optimization Framework

ÅCode: PostgreSQL Optimizer

ÅTheory: Cutting-Edge Technologies Overview

ÅSummary
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Cutting-Edge Technologies

ÅTraditional optimization was a “closed” problem

Å“Rethink the contract” ー Surajit Chaudhuri

ÅFeedback from previous execution

ÅDynamic integration with execution
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cardinality
estimation

cost model

plan space
enumeration

(SQL) query plan



Mid-query Re-optimization

ÅDetects sub-optimality of executing query plan
ÅQuery plans are annotated for later estimation 

improvement
ÅRuntime statistics collection
ÅStatistics collector probes are inserted into operators of 

executing query plan

ÅPlan modification strategy
ÅDiscard current execution and re-optimize whole plan
ÅRe-optimizer only subtree of the plan that are not 

started yet
ÅSave partial execution result and generate new SQL 

using the result
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Plan Bouquet

ÅGenerate a set of plans for each selectivity range

ÅEstimation improvement with runtime statistics
collection

ÅEvaluation with PostgreSQL
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Bounding Impact of Estimation Error 

Å“Uncertainty” analysis of cost estimation
ÅOptimality sensitivity to estimation error

ÅExecute partially to reduce uncertainty
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Summary

ÅCost-based optimization framework
ÅSystem-R style bottom-up optimization

ÅVolcano style top-down optimization

ÅDetailed look at PostgreSQL optimizer
ÅCost modeling of basic scan and join method

ÅExperiment with TPC-H benchmark

ÅBrief overview of cutting-edge technologies
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