
Beyond EXPLAIN

Yuto Hayamizu

RyojiKawamichi

Query Optimization
From Theory To Code

2016/5/20
PGCon2016 @ Ottawa

Before Relational é

ÅQuerying was physical

ÅNeed to understand
physical organization

ÅNavigate query execution
by yourself

2016/5/20 2

DEPT
EMP

PROJ

ñWhich file is this table stored in?ò

ñHow are records linked?ò

ñWhich access path is fast for this table?ò

ñWhat is the best order of joining tablesò

é

Historically …

Before Relational é

ÅQuerying was physical

ÅNeed to understand
physical organization

ÅNavigate query execution
by yourself

2016/5/20 3

After Relational …

DEPT
EMP

PROJ

ñWhich file is this table stored in?ò

ñHow are records linked?ò

ñWhich access path is fast for this table?ò

ñWhat is the best order of joining tablesò

é

ÅQuerying is logical

ÅPhysical organization is
black-boxed

ÅJust declare what you want

Historically …

Fill the Gap: Physicaland Logical

2016/5/20 4

SELECT * FROM DEPT D, EMP E

WHERE E. D_ID = D. ID AND ...

ÅStorage I/O strategy

ÅAccess path selection

ÅJoin method selection

ÅAggregation, sorting

ÅResource allocation

Å...

Query Optimizer

If optimizer perfectly fills the gap...

2016/5/20 5

We don’t need EXPLAIN

Reality Is Tough

ÅOptimizer is NOT PERFECT
ÅGenerated plans are not always optimal, sometimes

far from optimal

ÅWe have to take care of physical behavior

ÅThat’s why EXPLAIN is so much explained

2016/5/20 6

Go Beyond EXPLAIN

ÅDeeper understanding of optimization, better
control of your databases

ÅTheoretical fundamentals of query optimization
ÅFrom basic framework to cutting-edge technologies

ÅPostgreSQL Optimizer implementation
ÅFocusing on basic scan and join methods

ÅBehavior observation with TPC-H benchmark

2016/5/20 7

Outline

ÅIntroduction

ÅTheory: Query Optimization Framework

ÅCode: PostgreSQL Optimizer

ÅTheory: Cutting-Edge Technologies Overview

ÅSummary

2016/5/20 8

Query Optimization Framework

ÅCost-based optimization
ÅPlan selection with estimated execution cost

ÅMost of modern optimizers, including PostgreSQL,
are cost-based

ÅRule-based optimization
ÅPlan selection with heuristically ranked rules

ÅEasy to produce the same result

ÅHard to evaluate wide variety of plans

ÅEx) Oracle (~10g), Hive (~0.13)

2016/5/20 9

Main Challenges in Cost-based Optimization

ÅCost modeling is HARD
ÅOverhead of CPU, I/O, memory access, network, …

ÅCardinality estimation is HARD
ÅOutput size of scans, joins, aggregations, …

ÅJoin ordering search is HARD
ÅCombinatorial explosion of join ordering and access path

ÅExhaustive search is NP-hard

2016/5/20 10

System-R optimizer (1979)

Å“The standard”
ÅCost estimation with I/O and CPU

ÅCardinality estimation with table statistics

ÅBottom-up plan search

ÅMany of modern optimizers are “System-R style”
ÅPostgreSQL, MySQL, DB2, Oracle, ...

2016/5/20 11

Cost/Cardinality Estimation

Å[#page fetched],[# storage API calls]
are estimated with cost formula and following
statistics

2016/5/20 12

CPU costI/O cost

COST = [#page fetched] + W * [#storage API calls]

weight parameter

ÅNCARD(T) ... the cardinality of relation T
ÅTCARD(T) ... the number of pages in relation T
ÅICARD(I) ... the number of distinct keys in index I
ÅNINDX(I) ... the number of pages in index I

Bottom-up Plan Search

ÅCandidate plans for single relation
ÅThe cheapest access path

ÅN-relation join ordering search
ÅSelect the cheapest plans for each relation

ÅThen, find optimal join orderings of every 2-relation join

ÅThen, find optimal join orderings of every 3-relation join
Å... until N-relation

2016/5/20 13

Ex) A B C D

Ex) A B C D

Ex) A B C D

Ex) A B C D

Ex) A B C D

Volcano/Cascades (1993)

ÅTop-down transformational plan search
ÅYet another optimization approach
ÅNot well known as “System-R style”, but widely used in

practice
Ex) SQL Server, Apache Hive (Apache Calcite), Greenplum
Orca

ÅExtensible optimization framework
2016/5/20 19

Extensible Optimization Framework

Query Optimizer Generator

ÅGeneralized expression of query plan not limited
to relational data model

ÅUsers (optimizer developers) defines actual
implementations:
ÅLogical operator ... corresponds to relational algebra

ÅPhysical algorithm ... corresponds to scan & join
methods such as sequential scan, index scan, hash
join, nested loop join

2016/5/20 20

Top-down Transformational Search

ÅStarts from an initial “logical plan”

ÅGenerate alternative plans with:
A) Logical operator transformation
B) Physical algorithm selection
C) Enforcing sorting order

2016/5/20 21

Join Select T

Join

Select R Select S

Proj

Join

Select T

JoinSelect R

Select S

Proj

Change join ordering

Join Select T

Join

Select R

Select SProj

Projection push down

Example: 3-way join with projection

Top-down Transformational Search

ÅStarts from an initial “logical plan”

ÅGenerate alternative plans with:
A) Logical operator transformation
B) Physical algorithm selection
C) Enforcing sorting order

2016/5/20 22

Join Select T

Join

Select R Select S

ProjExample: 3-way join with projection

HashJoin Select T

Join

SeqScan R SeqScan S

Proj

Join IdxScan T

Join

Select R Select S

Proj
Χ

Top-down Transformational Search

ÅStarts from an initial “logical plan”

ÅGenerate alternative plans with:
A) Logical operator transformation
B) Physical algorithm selection
C) Enforcing sorting order

2016/5/20 23

Join Select T

Join

Select R Select S

Proj

Example: 3-way join with projection

Join Select T

Join

Sort Sort

Proj

Select R Select S

Enforce sorting order

merge join of R and S is possible now

Benefits of Top-down approach

ÅPossible to intentionally limit search space
ÅEffective pruning with branch-and-bound

ÅLimit search space with search time deadline

2016/5/20 24

Cost-based Optimization Basics

Two major cost-based optimization style

ÅSystem-R
ÅCost modeling with statistics

ÅBottom-up search

ÅVolcano/Cascades
ÅExtensible optimizer generator
ÅCost estimation is user’s responsibility

ÅTop-down transformational search

2016/5/20 25

Outline

ÅIntroduction

ÅTheory: Query Optimization Framework

ÅCode: PostgreSQL Optimizer

ÅTheory: Cutting-Edge Technologies Overview

ÅSummary

2016/5/20 26

PostgreSQL Optimizer

“System-R style” optimization
ÅBottom-up plan search with dynamic programming
ÅCPU and I/O operation based cost modeling

2016/5/20 27

Seq. I/O Random I/O CPU cost per tuple

Cost of single operation
Å seq_page_cost
Å random_page_cost
Å cpu_tuple_cost
Å cpu_index_tuple_cost
Å cpu_operator_cost
Å (parallel_tuple_cost)

Estimated number of each operation
Å Cardinality estimation with

statistics
Å Cost formula for each plan type

Å SeqScan, IndexScan
Å NestLoopJoin , HashJoin,

MergeJoin, ...

Detailed Look At Basic Scan Types

ÅSequential scan
ÅEfficient for accessing large potion of tables

ÅIndex scan
ÅEfficient for accessing a fraction of data

2016/5/20 28

Execution cost

Query selectivity

Sequential scan

of SeqScan

29

= (# pages in a table)

= (# tuples in a table)

= #qual_operator
= (#tuples) (weight factor of A)

+ (#tuples) (weight factor of B)

+

WHERE AND AND A B

cost_seqscan ()
@optimizer/path/ costsize.c

of IndexScan

Consists of:

(A) CPU cost of searching B+-tree

(B) CPU cost of scanning index tuples in leaf pages

(C) I/O cost of leaf pages

(D) I/O cost of heap pages

(E) CPU cost of scanning heap tuples

2014/12/04 30

of IndexScan

(A)B+-tree search

(B) Scanning index tuples in leaf pages

2014/12/04 31

+= log2(#index_tuples)

I/O cost of internal pages
Assumed to be always cached in the buffer

+= #qual_operator

#leaf_pages #ituple_per_page ů

Selectivity ů
Comes from statistics

Mackertand Lohman functionYao function
I/O count estimation with consideration of buffer caching

of IndexScan

(C) I/O cost of index leaf pages

2014/12/04 32

+= Y(effective_cache_size , #leaf_pages)

{ŜƭŜŎǘƛǾƛǘȅ ˋ

I/
O

 c
o

u
n
t

of IndexScan

(D) I/O cost of heap pages

(E) CPU cost of scanning heap tuples

・ Estimate the number of scanned tuples from ů

2014/12/04 33

+= Ŭ2 #match_pages

Correlation between index and heap ordering: Ŭ

Ŭ= 0 : I/O pattern is random Ŭ= 1 : I/O pattern is sequential

+= (1-Ŭ2) #match_tuples

Detailed Look At Join Methods

ÅHash join
ÅEfficient for joining large number of records

ÅUsually combined with sequential scans

ÅNested Loop Join
ÅEfficient for joining small number of records

ÅUsually combined with index scansor small table
sequential scans

2016/5/20 34

of HashJoin

2014/12/04 35

of HashJoin

Build phase

ÅCost += Cost(inner)

2014/12/04 36

+= #qual_op #inner_tuples

+= #inner_tuples

Hashing cost

of HashJoin

2014/12/04 37

Build phase

ÅCost += Cost(inner)
+= #qual_op #inner_tuples

+= #inner_tuples

of HashJoin

2014/12/04 38

Build phase

ÅCost += Cost(inner)+

Probe phase

ÅCost += Cost(outer)+

+= #qual_op #inner_tuples

+= #inner_tuples

+= #qual_op (1 + #bucket_size 0.5)
#outer_tuples

+= #match_tuples

Hashing & table lookup (bucket search) cost

recordrecordrecordrecordrecordrecordrecordrecordrecordrecordrecordrecordrecordrecordrecordtuple

of HashJoin

2014/12/04 39

#buckets: 2 #buckets : 4

build

4 tuples are compared for
lookup in average 2 tuples are compared for lookup

in average

0.E+00

5.E+06

1.E+07

2.E+07

2.E+07

3.E+07

3.E+07

4.E+07

4.E+07

10000 100000 1000000 10000000 100000000

Estimated cost of 2-way HashJoin

of records

16 records

recordrecordrecordrecordrecordrecordrecordtuple

recordrecordrecordrecordrecordrecordrecordtuple

recordrecordrecordtuple

recordrecordrecordtuple

recordrecordrecordtuple

recordrecordrecordtuple

of NestLoopJoin

2014/12/04 40

R S Scan R r2

r1

r3

r4

Scan Swith r1

s1

s2

s3

ReScanSwith r2

s1

s2

s3

outer inner

of NestLoopJoin

ÅWhen #outer_tuples= 1

2014/12/04 41

R S Scan R

r1
Scan Swith r1

s1

s2

s3

outer inner

Cost = Cost(outer) + Cost(inner) +

+= #inner_tuples

+= #qual_operator #inner_tuples

of NestLoopJoin

ÅWhen #outer_tuples> 1

R S Scan R r2

r1

r3

r4

Scan Swith r1

s1

s2

s3

ReScanSwith r2

s1

s2

s3

outer inner

Cost = Cost(outer) + Cost(inner) +

+ (#outer_tuples- 1) Cost(ReScaninner)

Higher buffer hit ratio in ReScan
Ҧ Cost of ReScanis lower than cost of IndexScan

+= #inner_tuples #outer_tuples

+= #qual_operator #inner_tuples #outer_tuples

See How It Works

ÅTPC-H Benchmark
ÅSpecification and tools for benchmarkingdata

warehouse workload
ÅOpen source implementation: DBT-3, pg_tpch

ÅSchema, data generation rules and queries

ÅExperiments with 100GB
ÅScale Factor = 100

2016/5/20 43

Experimental Setup

ÅDell R720xd
ÅXeon (2sockets, 16cores)
Åx24 NL-SAS HDD

ÅWith PostgreSQL 9.5
ÅDefault cost parameter settings
ÅSeqScan& HashJoin
Åenable_seqscan = on, enable_hashjoin = on

and disables other methods

ÅIndexScan & NestLoopJoin
Åenable_indexscan = on, enable_nestloop = on

and disables other methods

2016/5/20 44

TPC-H Q.1: The Simplest Case

2016/5/20 45

5.E+05

5.E+06

5.E+07

5.E+08

1 10 100 1000

Estimated cost

Selectivity (l_shipdate)

IndexScan

SeqScan

10

100

1000

10000

1 10 100 1000

Execution time (sec)

Selectivity(l_shipdate)

IndexScan

SeqScan

ÅGood trend estimation for each
method

ÅEstimated break -event point is
errorneus
Å IndexScan should be more

expensive (need parameter
calibration)

SELECT count(*), ... FROM lineitem
WHERE l_shipdate BETWEEN [X] AND [Y]

TPC-H Q.3

2016/5/20 46

Estimated cost

SeqScan
customer

SeqScan
orders

SeqScan
lineitem

Hash

HashJoin

HashJoin

IndexScan
orders

IndexScan
lineitem

NestLoop

NestLoop

IndexScan
customer

Execution time (sec)

Selectivity

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1 10 100 1000 10000 100000 1000000

1

10

100

1000

10000

1 10 100 1000 10000 100000 1000000

Selectivity

NestLoop+IndexScan

HashJoin+SeqScan

NestLoop+IndexScan

HashJoin+SeqScan Similar result as in Q.1

ÅGood trend estimation for each

ÅErroneous break -event point
without parameter calibration

SELECT count(*), ...
FROM customer, orders, lineitem
WHERE c_custkey = o_custkey AND

o_orderkey = l_orderkey AND
c_custkey < [X] AND
c_mktsegment ˮ ƥ-!#().%29ƦƘ

100

1000

10000

100000

1 10 100 1000 10000

More Complex Case
TPC-H Q.4: Semi-Join Query

ÅPlan selection for semi-
join tend to be unstable

2016/5/20 47Selectivity

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1 10 100 1000 10000

HashJoin+SeqScan

NestLoop+IndexScan

Estimated cost

Execution time (sec)

HashJoin+SeqScan

NestLoop+IndexScan SELECT count(*), ...
FROM orders
WHERE

o_orderdate ˲ˮ ƥʦʮʮʪ- 01-ʣʦƦ !.$
o_orderdate ˱ ƥʦʮʮʪ- 01-ʣʦƦ

˩ ÉÎÔÅÒÖÁÌ ƥʨ ÍÏÎÔÈƦAND
EXISTS(

SELECT * FROM lineitem
WHERE l_orderkey = o_orderkey

AND l_commitdate < l_receiptdate)

Selectivity

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08

More Complex Case
TPC-H Q.22: Anti-Join Query

ÅDifficulties in overall cost
trend estimation

2016/5/20 48

Selectivity

1

10

100

1000

10000

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08

Estimated cost

Execution time (sec)

Selectivity

HashJoin+SeqScan

NestLoop+IndexScan

HashJoin+SeqScan

NestLoop+IndexScan

SELECT count(*), ...
FROM supplier , lineitem l1 , orders, nation
WHERE s_suppkey = l1.l_suppkey AND

o_orderkey = l1.l_orderkey AND
o_orderstatus = 'F' AND
l1.l_receiptdate > l1.l_commitdate AND

EXISTS (
SELECT * FROM lineitem l2

WHERE l2.l_orderkey = l1.l_orderkey
AND l2.l_suppkey <> l1.l_suppkey)

AND NOT EXIST (
SELECT * FROM lineitem l3

WHERE l3.l_orderkey = l1.l_orderkey
AND l3.l_suppkey <> l1.l_suppkey
AND l3.l_receiptdate > l3.l_commitdate)

AND s_nationkey = n_nationkey
AND n_nameˮ ƥ*!0!.ʎ

Summary: PostgreSQL
Optimizer
ÅDetailed look at cost modeling of basic methods
ÅSeqScan, IndexScan

ÅHashJoin, NestedLoopJoin

ÅObservation with TPC-H benchmark
ÅGood cost trend estimation for simple join queries
ÅErroneous cheapest plan selection without parameter tuning

ÅDifficulties with semi-join and anti- join queries

2016/5/20 49

Outline

ÅIntroduction

ÅTheory: Query Optimization Framework

ÅCode: PostgreSQL Optimizer

ÅTheory: Cutting-Edge Technologies Overview

ÅSummary

2016/5/20 50

Cutting-Edge Technologies

ÅTraditional optimization was a “closed” problem

Å“Rethink the contract” ー Surajit Chaudhuri

ÅFeedback from previous execution

ÅDynamic integration with execution

2016/5/20 51

cardinality
estimation

cost model

plan space
enumeration

(SQL) query plan

Mid-query Re-optimization

ÅDetects sub-optimality of executing query plan
ÅQuery plans are annotated for later estimation

improvement
ÅRuntime statistics collection
ÅStatistics collector probes are inserted into operators of

executing query plan

ÅPlan modification strategy
ÅDiscard current execution and re-optimize whole plan
ÅRe-optimizer only subtree of the plan that are not

started yet
ÅSave partial execution result and generate new SQL

using the result

2016/5/20 52

[N. KabraŜǘΦŀƭΦΣ {LDah5Ωфуϐ

Plan Bouquet

ÅGenerate a set of plans for each selectivity range

ÅEstimation improvement with runtime statistics
collection

ÅEvaluation with PostgreSQL

2016/5/20 53

[A. DuttŜǘΦŀƭΦΣ {LDah5Ωмпϐ

Bounding Impact of Estimation Error

Å“Uncertainty” analysis of cost estimation
ÅOptimality sensitivity to estimation error

ÅExecute partially to reduce uncertainty

2016/5/20 54

[T. Neumann et.al., BTW ConfΨмоϐ

Outline

ÅIntroduction

ÅTheory: Query Optimization Framework

ÅCode: PostgreSQL Optimizer

ÅTheory: Cutting-Edge Technologies Overview

ÅSummary

2016/5/20 55

Summary

ÅCost-based optimization framework
ÅSystem-R style bottom-up optimization

ÅVolcano style top-down optimization

ÅDetailed look at PostgreSQL optimizer
ÅCost modeling of basic scan and join method

ÅExperiment with TPC-H benchmark

ÅBrief overview of cutting-edge technologies

2016/5/20 56

