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Aggressiveness of autovacuum
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How to remove bloat
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Two most common problems we meet in our practice

e autovacuum = off

e Autovacuum settings are default
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Two most common problems we meet in our practice

e autovacuum = off
e Autovacuum settings are default

e That means there is a lot we can do about improving
performance of this particular database
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What is autovacuum?

Modern (classical) databases must deal with two
fundamental problems:
e Concurrent operations
For that they can transactions, ACID transactions
¢ Failures

For that they can recover to the last successful transaction
using WAL
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What is autovacuum?

Technically that means

e There is a combination of locking and MVCC algorithms that
provides transactions support

e Undo and Redo information is stored somewhere to make
recovery possible
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What is autovacuum?

In PostgreSQL
e Redo - in WAL
e Undo - directly in datafiles
e UPDATE = INSERT + DELETE
e DELETE is just marking tuple as invisible
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tt=# INSERT into test(id) values(5);
INSERT 0 1
tt=# select *,xmin,xmax from test;
id | xmin | xmax
e S o
5 | 1266 | 0

(5 rows)

tt=# select txid_current();
txid_current
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INSERT
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tt=# begin;

BEGIN

tt=# UPDATE test set id=5 where id=4;
UPDATE 1

In another session:

tt=# select *,xmin,xmax from test;
id | xmin | xmax
S I

4 | 1264 | 1270

(3 rows)
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UPDATE
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Some garbage collection is required

Tuples that are not visible to any running transaction should
be removed

e Otherwise fragmentation increases and you run into bloat aka
Big Data

e autovacuum workers do that, table by table

e Old-fashioned VACUUM is a bad choice
Beside that, autovacuum workers

e Collect statistics for the optimizer

e Perform wraparound for txid!

1 will not cover wraparound,

for details please see a talk by PostgreSQL Consulting
Masahiko Sawada http://goo.gl/15YZNX



Some garbage collection is required

Tuples that are not visible to any running transaction should
be removed

e Otherwise fragmentation increases and you run into bloat aka
Big Data

e autovacuum workers do that, table by table

e Old-fashioned VACUUM is a bad choice
Beside that, autovacuum workers

e Collect statistics for the optimizer

e Perform wraparound for txid!

You do not want to turn autovacuum off!

1 will not cover wraparound,

for details please see a talk by PostgreSQL Consulting
Masahiko Sawada http://goo.gl/15YZNX



VACUUM vs autovacuum

¢ VACUUM removes all pages, which are not visible to any
running transaction?

e You need to run it really frequently, to prevent bloat
(VACUUM does not remove it!)

e If you don't, you will need VACUUM FULL - it rebuilds the
table, that can be painful

e autovacuum automates that all in some convenient manner

2Things are more complicated,

refer to Jim Nasby's talk PostgreSQL-Consulting
http://goo.gl/KOPDtq for some details



This sort of work must be finally done

e If your autovacuum process runs for hours and interferes with
some DDL, to simply terminate it is not an option

e Especially for OLTP, autovacuum should be configured
aggressively enough: so it can work with small portions of
data quickly
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autovacuum: aggressive enough

postgres=# select name, setting, cont
where category ~ ’Autovacuum’;

autovacuum
autovacuum_analyze_scale_factor
autovacuum_analyze_threshold

autovacuum_max_workers

autovacuum_naptime
autovacuum_vacuum_cost_delay
autovacuum_vacuum_cost_limit
autovacuum_vacuum_scale_factor
autovacuum_vacuum_threshold
(11 rows)

ext from pg_settings

| setting | context
Fommmmmmmo o oo
| on | sighup

| 0.05 | sighup

| 50 | sighup

| 10 | postmaster
| 60 | sighup

| 10 | sighup

| -1 | sighup

| 0.01 | sighup

| 50 | sighup
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Scale factors

autovacuum _vacuum _scale factor = 0.01 means that at
least 1% of rows (% of table size) in the table should be
changed before autovacuum happens

autovacuum vacuum _threshold - alternative setting, exact
number of rows

The idea is to make autovacuum work more frequently,
vacuuming tables in small portions

Can be set per-table, but that can be some sort of pain
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Autovacuum has it's own mechanism to reduce /O ov

Autovacuum delays autovacuum naptime seconds, then checks
tables if they need a vacuum. It runs vacuum on a table until
autovacuum__vacuum__cost_limit is reached, then sleeps
autovacuum vacuum_ cost_delay milliseconds.

e |t looks like this mechanism does not work like it was designed

e For example it doesn't make a difference between physical and
logical 10

e | doubt if such mechanism is useful at all on modern SSD’s
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A good idea, if you have bad disks

in crontab:

* % % * * /usr/bin/pgrep -f ’postgres: autovacuum’ | xargs --no-run-if-empty -I $ renice -n 20 -p $ >/dev/null 2>/dev/null
* % x * % /usr/bin/pgrep -f ’postgres: autovacuum’ | xargs --no-run-if-empty -I $ ionice -c¢ 3 -t -p $

in postgresql.conf:
autovacuum__max_ workers — 10-20
autovacuum_vacuum_cost delay — 10

Keep in mind, that ionice could not work in certain cases, such as Noop scheduller,
LWM or software RAID
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autovacuum _vacuum_ cost delay

e On fast SSD, autovacuum _vacuum_cost delay should be be
shorter than on slower SAS

e |s a global setting

e In some cases can be an issue (one tablespace on SSD,
another on SAS)
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ERROR: canceling statement due to conflict with reco

e The tuple, cleaned up by autovacuum on master, is still in use
by some query on hot standby

e hot standby feedback = on - The safest way, in spite of
some bloat on master
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Before you hurry to reconfigure your PostgreSQL

autovacuum does not remove existing bloat

dump/restore can be an option, but...
http://reorg.github.io/pg_repack/
https://github.com/PostgreSQL-Consulting /pgcompacttable
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ik@postgresql-consulting.com
slides will be available at
pgcon.org
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