
Autovacuum, explained for engineers
PGCon 2016, Ottawa

Ilya Kosmodemiansky
ik@postgresql-consulting.com

Outline

• What is it and why is it so important?
• Aggressiveness of autovacuum
• What else important can autovacuum daemon do
• Some issues with schedulling autovacuum
• Autovacuum and replication
• How to remove bloat

Two most common problems we meet in our practice

• autovacuum = off
• Autovacuum settings are default

Two most common problems we meet in our practice

• autovacuum = off
• Autovacuum settings are default
• That means there is a lot we can do about improving
performance of this particular database

What is autovacuum?

Modern (classical) databases must deal with two
fundamental problems:

• Concurrent operations
For that they can transactions, ACID transactions

• Failures
For that they can recover to the last successful transaction
using WAL

What is autovacuum?

Technically that means
• There is a combination of locking and MVCC algorithms that
provides transactions support

• Undo and Redo information is stored somewhere to make
recovery possible

What is autovacuum?

In PostgreSQL
• Redo - in WAL
• Undo - directly in datafiles
• UPDATE = INSERT + DELETE
• DELETE is just marking tuple as invisible

xmin

tt=# INSERT into test(id) values(5);
INSERT 0 1
tt=# select *,xmin,xmax from test;
id | xmin | xmax

----+------+------
5 | 1266 | 0

(5 rows)

tt=# select txid_current();
txid_current

1267

(1 row)

INSERT

8K pageHeader

Tailxmin: 1266
xmax: 0

xmax

tt=# begin;
BEGIN
tt=# UPDATE test set id=5 where id=4;
UPDATE 1

In another session:

tt=# select *,xmin,xmax from test;
id | xmin | xmax

----+------+------
4 | 1264 | 1270

(3 rows)

UPDATE

8K pageHeader

Tailxmin: 1266
xmax: 1270

xmin: 1270
xmax: 0

Some garbage collection is required

Tuples that are not visible to any running transaction should
be removed

• Otherwise fragmentation increases and you run into bloat aka
Big Data

• autovacuum workers do that, table by table
• Old-fashioned VACUUM is a bad choice

Beside that, autovacuum workers
• Collect statistics for the optimizer
• Perform wraparound for txid1

1I will not cover wraparound,
for details please see a talk by
Masahiko Sawada http://goo.gl/15YZNX

Some garbage collection is required

Tuples that are not visible to any running transaction should
be removed

• Otherwise fragmentation increases and you run into bloat aka
Big Data

• autovacuum workers do that, table by table
• Old-fashioned VACUUM is a bad choice

Beside that, autovacuum workers
• Collect statistics for the optimizer
• Perform wraparound for txid1

You do not want to turn autovacuum off!
1I will not cover wraparound,

for details please see a talk by
Masahiko Sawada http://goo.gl/15YZNX

VACUUM vs autovacuum

• VACUUM removes all pages, which are not visible to any
running transaction2

• You need to run it really frequently, to prevent bloat
(VACUUM does not remove it!)

• If you don’t, you will need VACUUM FULL - it rebuilds the
table, that can be painful

• autovacuum automates that all in some convenient manner

2Things are more complicated,
refer to Jim Nasby’s talk
http://goo.gl/K0PDtq for some details

This sort of work must be finally done

• If your autovacuum process runs for hours and interferes with
some DDL, to simply terminate it is not an option

• Especially for OLTP, autovacuum should be configured
aggressively enough: so it can work with small portions of
data quickly

autovacuum: aggressive enough

postgres=# select name, setting, context from pg_settings
where category ~ ’Autovacuum’;

name | setting | context
-------------------------------------+-----------+------------
autovacuum | on | sighup
autovacuum_analyze_scale_factor | 0.05 | sighup
autovacuum_analyze_threshold | 50 | sighup
...
autovacuum_max_workers | 10 | postmaster
...
autovacuum_naptime | 60 | sighup
autovacuum_vacuum_cost_delay | 10 | sighup
autovacuum_vacuum_cost_limit | -1 | sighup
autovacuum_vacuum_scale_factor | 0.01 | sighup
autovacuum_vacuum_threshold | 50 | sighup

(11 rows)

Scale factors

• autovacuum_vacuum_scale_factor = 0.01 means that at
least 1% of rows (% of table size) in the table should be
changed before autovacuum happens

• autovacuum_vacuum_threshold - alternative setting, exact
number of rows

• The idea is to make autovacuum work more frequently,
vacuuming tables in small portions

• Can be set per-table, but that can be some sort of pain

Autovacuum has it’s own mechanism to reduce I/O overhead

Autovacuum delays autovacuum_naptime seconds, then checks
tables if they need a vacuum. It runs vacuum on a table until

autovacuum_vacuum_cost_limit is reached, then sleeps
autovacuum_vacuum_cost_delay milliseconds.

• It looks like this mechanism does not work like it was designed
• For example it doesn’t make a difference between physical and
logical IO

• I doubt if such mechanism is useful at all on modern SSD’s

A good idea, if you have bad disks

in crontab:

* * * * * /usr/bin/pgrep -f ’postgres: autovacuum’ | xargs --no-run-if-empty -I $ renice -n 20 -p $ >/dev/null 2>/dev/null
* * * * * /usr/bin/pgrep -f ’postgres: autovacuum’ | xargs --no-run-if-empty -I $ ionice -c 3 -t -p $

in postgresql.conf:
autovacuum_max_workers → 10-20
autovacuum_vacuum_cost_delay → 10

Keep in mind, that ionice could not work in certain cases, such as Noop scheduller,

LWM or software RAID

As a result

autovacuum_vacuum_cost_delay

• On fast SSD, autovacuum_vacuum_cost_delay should be be
shorter than on slower SAS

• Is a global setting
• In some cases can be an issue (one tablespace on SSD,
another on SAS)

ERROR: canceling statement due to conflict with recovery

• The tuple, cleaned up by autovacuum on master, is still in use
by some query on hot standby

• hot_standby_feedback = on - The safest way, in spite of
some bloat on master

Before you hurry to reconfigure your PostgreSQL

• autovacuum does not remove existing bloat
• dump/restore can be an option, but...
• http://reorg.github.io/pg_repack/
• https://github.com/PostgreSQL-Consulting/pgcompacttable

Questions?

ik@postgresql-consulting.com
slides will be available at

pgcon.org

