Autovacuum, explained for engineers
PGCon 2016, Ottawa

llya Kosmodemiansky
ik@postgresql-consulting.com

PostgreSQL-Consulting

Outline

What is it and why is it so important?
Aggressiveness of autovacuum

What else important can autovacuum daemon do
Some issues with schedulling autovacuum
Autovacuum and replication

How to remove bloat

PostgreSQL-Consulting

Two most common problems we meet in our practice

e autovacuum = off

e Autovacuum settings are default

PostgreSQL-Consulting

Two most common problems we meet in our practice

e autovacuum = off
e Autovacuum settings are default

e That means there is a lot we can do about improving
performance of this particular database

PostgreSQL-Consulting

What is autovacuum?

Modern (classical) databases must deal with two
fundamental problems:
e Concurrent operations
For that they can transactions, ACID transactions
¢ Failures

For that they can recover to the last successful transaction
using WAL

PostgreSQL-Consulting

What is autovacuum?

Technically that means

e There is a combination of locking and MVCC algorithms that
provides transactions support

e Undo and Redo information is stored somewhere to make
recovery possible

PostgreSQL-Consulting

What is autovacuum?

In PostgreSQL
e Redo - in WAL
e Undo - directly in datafiles
e UPDATE = INSERT + DELETE
e DELETE is just marking tuple as invisible

PostgreSQL-Consulting

tt=# INSERT into test(id) values(5);
INSERT 0 1
tt=# select *,xmin,xmax from test;
id | xmin | xmax
e S o
5 | 1266 | 0

(5 rows)

tt=# select txid_current();
txid_current

PostgreSQL-Consulting

INSERT

Header 8K page

PostgreSQL-Consulting

tt=# begin;

BEGIN

tt=# UPDATE test set id=5 where id=4;
UPDATE 1

In another session:

tt=# select *,xmin,xmax from test;
id | xmin | xmax
S I

4 | 1264 | 1270

(3 rows)

PostgreSQL-Consulting

UPDATE

Header 8K page

PostgreSQL-Consulting.com

Some garbage collection is required

Tuples that are not visible to any running transaction should
be removed

e Otherwise fragmentation increases and you run into bloat aka
Big Data

e autovacuum workers do that, table by table

e Old-fashioned VACUUM is a bad choice
Beside that, autovacuum workers

e Collect statistics for the optimizer

e Perform wraparound for txid!

1 will not cover wraparound,

for details please see a talk by PostgreSQL Consulting
Masahiko Sawada http://goo.gl/15YZNX

Some garbage collection is required

Tuples that are not visible to any running transaction should
be removed

e Otherwise fragmentation increases and you run into bloat aka
Big Data

e autovacuum workers do that, table by table

e Old-fashioned VACUUM is a bad choice
Beside that, autovacuum workers

e Collect statistics for the optimizer

e Perform wraparound for txid!

You do not want to turn autovacuum off!

1 will not cover wraparound,

for details please see a talk by PostgreSQL Consulting
Masahiko Sawada http://goo.gl/15YZNX

VACUUM vs autovacuum

¢ VACUUM removes all pages, which are not visible to any
running transaction?

e You need to run it really frequently, to prevent bloat
(VACUUM does not remove it!)

e If you don't, you will need VACUUM FULL - it rebuilds the
table, that can be painful

e autovacuum automates that all in some convenient manner

2Things are more complicated,

refer to Jim Nasby's talk PostgreSQL-Consulting
http://goo.gl/KOPDtq for some details

This sort of work must be finally done

e If your autovacuum process runs for hours and interferes with
some DDL, to simply terminate it is not an option

e Especially for OLTP, autovacuum should be configured
aggressively enough: so it can work with small portions of
data quickly

PostgreSQL-Consulting

autovacuum: aggressive enough

postgres=# select name, setting, cont
where category ~ ’Autovacuum’;

autovacuum
autovacuum_analyze_scale_factor
autovacuum_analyze_threshold

autovacuum_max_workers

autovacuum_naptime
autovacuum_vacuum_cost_delay
autovacuum_vacuum_cost_limit
autovacuum_vacuum_scale_factor
autovacuum_vacuum_threshold
(11 rows)

ext from pg_settings

| setting | context
Fommmmmmmo o oo
| on | sighup

| 0.05 | sighup

| 50 | sighup

| 10 | postmaster
| 60 | sighup

| 10 | sighup

| -1 | sighup

| 0.01 | sighup

| 50 | sighup

PostgreSQL-Consulting

Scale factors

autovacuum _vacuum _scale factor = 0.01 means that at
least 1% of rows (% of table size) in the table should be
changed before autovacuum happens

autovacuum vacuum _threshold - alternative setting, exact
number of rows

The idea is to make autovacuum work more frequently,
vacuuming tables in small portions

Can be set per-table, but that can be some sort of pain

PostgreSQL-Consulting

Autovacuum has it's own mechanism to reduce /O ov

Autovacuum delays autovacuum naptime seconds, then checks
tables if they need a vacuum. It runs vacuum on a table until
autovacuum__vacuum__cost_limit is reached, then sleeps
autovacuum vacuum_ cost_delay milliseconds.

e |t looks like this mechanism does not work like it was designed

e For example it doesn't make a difference between physical and
logical 10

e | doubt if such mechanism is useful at all on modern SSD’s

PostgreSQL-Consulting

A good idea, if you have bad disks

in crontab:

* % % * * /usr/bin/pgrep -f ’postgres: autovacuum’ | xargs --no-run-if-empty -I $ renice -n 20 -p $ >/dev/null 2>/dev/null
* % x * % /usr/bin/pgrep -f ’postgres: autovacuum’ | xargs --no-run-if-empty -I $ ionice -c¢ 3 -t -p $

in postgresql.conf:
autovacuum__max_ workers — 10-20
autovacuum_vacuum_cost delay — 10

Keep in mind, that ionice could not work in certain cases, such as Noop scheduller,
LWM or software RAID

PostgreSQL-Consulting

workers

7.5

2.5

0

As a result

Autovacuum workers dbO4 N

ki e kil

23 Jan 24 Jan 25 Jan 26 Jan 27 Jan 28 Jan 29 Jan

wraparound [l common — max

PostgreSQL-Consulting

autovacuum _vacuum_ cost delay

e On fast SSD, autovacuum _vacuum_cost delay should be be
shorter than on slower SAS

e |s a global setting

e In some cases can be an issue (one tablespace on SSD,
another on SAS)

PostgreSQL-Consulting

ERROR: canceling statement due to conflict with reco

e The tuple, cleaned up by autovacuum on master, is still in use
by some query on hot standby

e hot standby feedback = on - The safest way, in spite of
some bloat on master

PostgreSQL-Consulting

Before you hurry to reconfigure your PostgreSQL

autovacuum does not remove existing bloat

dump/restore can be an option, but...
http://reorg.github.io/pg_repack/
https://github.com/PostgreSQL-Consulting /pgcompacttable

PostgreSQL-Consulting

ik@postgresql-consulting.com
slides will be available at
pgcon.org

PostgreSQL-Consulting

