
Non-volatile Memory (NVM)
Logging

2016.05.20
Takashi HORIKAWA

1

Who am I
Name

Takashi HORIKAWA, Ph. D.

Research interests
Performance evaluation of computer & communication systems, including

performance engineering of IT systems
with slightly shifting the focus of the research to CPU scalability

Papers
Latch-free data structures for DBMS: design, implementation, and evaluation,
SIGMOD ‘13
An Unexpected Scalability Bottleneck in a DBMS: A Hidden Pitfall in Implementing
Mutual Exclusion, PDCS ‘11
An approach for scalability-bottleneck solution: identification and elimination of
scalability bottlenecks in a DBMS, ICPE '11
A method for analysis and solution of scalability bottleneck in DBMS, SoICT '10

2

Contents

• Introduction
• Problems to be solved
• Implementation
• Evaluation
• Technical trends
• Conclusion

3

Write Ahead Logging
Sync. vs Async. Commit
Difference in Performance
Fundamental idea for NVM Logging
Byte or Block Addressable NVM
Byte addressable NVMs

Introduction

4

Write Ahead Logging

Worker process

Shared buffer WAL buffer

Asynchronous Write Synchronous Write

Data files WAL files

Storage

Worker processWorker processWorker process

Memory

Table
Index

XLog

Transaction
processing

Widely used method to make transaction durable

5

XLog recordTable, Index

Write Ahead Logging

Worker process

Shared buffer WAL buffer

Asynchronous Write Synchronous Write

Data files WAL files

Storage

Worker processWorker processWorker process

Memory

Table
Index

XLog

Write latency is included
in transaction response

Overhead

Transaction
processing

Widely used method to make transaction durable

6

XLog recordTable, Index

Sync. vs Async. Commit

7

Transaction processing WAL write (I/O)

t

Transaction becomes durable

Sync. vs Async. Commit

8

Transaction processing WAL write (I/O)

t

Notifying the client of
the transaction commit

Sync. commit

Transaction becomes durable

In sync. commit
the client is notified of the transaction commit
after the transaction becomes durable.

Durability : OK
Response : Slow

Sync. vs Async. Commit

9

Transaction processing WAL write (I/O)

t

Notifying the client of
the transaction commit

Async. commit

Transaction becomes durable

In async. commit
the client is notified of the transaction commit
before the transaction becomes durable.

Durability : NG
Response : Fast

Difference in Performance

10

0 40 80 120 160
0

10000

20000

30000

40000

50000

Clients
Th

ro
ug

hp
ut

Asy
nc

Sy
nc

0 40 80 120 160
0

10000

20000

30000

40000

50000

Clients

Th
ro

ug
hp

ut
 (T

PS
)

Async

Sync

(PGBENCH)

Disk-drive cache off Disk-drive cache on

Fundamental idea for NVM Logging

Worker process

Shared buffer WAL buffer

Asynchronous Write Synchronous Write

Data files WAL files

Storage

Worker processWorker processWorker process

Memory

Table
Index

XLog

Transaction
processing

Non-volatile

11

XLog recordTable, Index

Volatile

Fundamental idea for NVM Logging

Worker process

Shared buffer WAL buffer

Asynchronous Write Asynchronous Write

Data files WAL files

Storage

Worker processWorker processWorker process

Memory

Table
Index

XLog

Transaction
processing

Volatile

12

XLog recordTable, Index

XLog record is stored as
non-volatile memory

NVM

Non-volatile

Byte or Block Addressable NVM

13

CPU

Memory

Store instruction

Storage

HD,
SSD

I/O operation

Accessed in units of byte

Accessed in units of block

Byte addressable NVM

Block addressable NVM
(Commonly used already)

(Expected to be used from now on)

Key device in
NVM Logging

Byte addressable NVMs
• Combination of existing technologies -- DRAM, SSD, battery （NVDIMM）

– AgigA Tech (Micron Technology)
– Viking Techonogy
– SK Hynix

• Use of a new memory cell （Storage Class Memory）
– Phase Change Memory (PCM)
– Magnetic Random Access Memory (MRAM)
– Ferroelectric RAM (FRAM)
– The memristor

14

Capacity

Small

Large

Access time

~100nS

~μS

Ready-to-use

Near future (?)

Availability

Fundamental idea for NVM Logging (Again)
It is not simple than it looks
Necessary condition for Recovery
Problems

Partial write
Unreachable XLog Record
CPU cache effect

Problems to be solved

15

Fundamental idea for NVM Logging

Worker process

Shared buffer WAL buffer

Asynchronous Write Asynchronous Write

Data files WAL files

Storage

Worker processWorker processWorker process

Memory

Table
Index

XLog

Transaction
processing

Volatile

16

XLog recordTable, Index

XLog record is stored as
non-volatile memory

NVM

Non-volatile

(Again)

It is not simple than it looks

• Naive implementation of NVM Logging
– Allocating WAL buffer in NVM area
– Using asynchronous commit mode

• Problems are:
– Partial write
– Unreachable XLog Record
– CPU cache effect

17

Not sufficient

Necessary condition for Recovery

• If the recovery process reads all XLR of
transaction m correctly

transaction m is possible to be recovered

• Else transaction m will be lost

18

LSN

XLRm,N-2 XLRm,N-1 XLRm,NXLog

A worker process finishes the commit of the transaction after all
XLRs of the transaction are stored in the non-volatile memory.

Partial write

• The recovery process will read an incomplete
XLR
if the system crashes in the middle of writing a XLR

19

XLR 1

WAL buffer

LSN

(CRC in the XLR may be effective but it is not perfect)

Unreachable XLog Record

• The recovery process cannot find a XLR of a
committed transaction
– A worker process finishes writing of XLR 3 before

another worker process begin to write XLR 2

20

XLR 1

WAL buffer
LSN

XLR 2 XLR 3

Length1

XLog reader finds the head position of a XLR by adding
the head position of the previous XLR and its length

CPU cache effect

• The recovery process will read inconsistent
XLR

21

CPU

Memory

Cache

Inconsistent

If the CPU internal cache uses write-back policy, a XLR written
by the CPU does not reach to the memory immediately

Prototype architecture
Preventing partial write
Preventing an unreachable XLR
Use of Write-combined mode
GUC parameter for NVM Logging
Accessing NVM at recovery
Wrap around of WAL buffer

Implementation

22

Prototype architecture

23

File system

PostgreSQL

open mmap

WAL buffer

Pseudo NVM
(pram)

Shared buffer

user
kernel

ext4 ext3 xfs
ext2pm

Modified

Newly added

Kernel module

Similar to RAM disk but CPU cache mode differs

(9.6devel at the middle of March)

Preventing partial write

24

XLog Record

Tail

Start

Reserve

Write data

t

LSN
Write len

New tail

1. Move the tail pointer to reserve buffer area

2. Write the XLR data other than length field

3. Write length field of the XLR

(At this point length field of XLR in XLog buffer is 0)

If XLog reader find a XLR whose length field is not zero,
all XLR data is written in the XLog buffer.

Preventing an unreachable XLR

25

XLR 1
Start

Reserve 1

t
LSN

Write 1

Reserve 2

Write 2

Reserve 3

Write 3

Reserve 4

Write 4

XLR 2

XLR 3

WP waits until commit
becomes able to be finished

WP finishes the commit as
all previous XLRs are written

Write

Write Write

Write

Wait control

• A wait mechanism is already implemented in
PostgreSQL
static XLogRecPtr

WaitXLogInsertionsToFinish(XLogRecPtr upto)

If any XLR with a smaller LSN than the upto parameter is not
finished to copy in the WAL buffer, the worker process sleeps
until all of those XLRs are copied in the WAL buffer.

NVM Logging implements the wait mechanism by using
this function

26

Use of Write-combined mode

27

File system

PostgreSQL

open mmap

WAL buffer

Pseudo NVM
(pram)

Shared buffer

user
kernel

ext4 ext3 xfs
ext2pm

Kernel module

Write-combined mode, which is a variation of write-through,
is set for the memory pages for pseudo NVM.

GUC parameter for NVM Logging

• NVM Logging is enabled through one GUC
parameter (described in postgresql.conf)

– PRAM_FILE_NAME = “NVM File name”

• When PRAM_FILE_NAME is set
– XLOGShmemInit() invokes open() and mmap() to

“NVM File name” and uses the memory area for WAL
buffer

– CopyXLogRecordToWAL() copies XLR in WAL buffer
according to the procedure that prevents partial write

28

Accessing NVM at recovery

29

XLogReader

XLog buffer in NVM

n n+1 n+2 n+3n-1n-2

minLSN maxLSN

Segment number

WAL files

XLogReader accesses NVM XLog buffer to obtain XLog records
whose LSN is between minLSN and maxLSN

LSN

Wrap around of WAL buffer

30

Logical view

LSN

NVM size

Saved in XLog files

InitializedUpto

Written in NVM only

EvaluatedUpto Current write point

Wrap around of WAL buffer

31

Logical view

LSN

NVM size

Saved in XLog files

InitializedUpto

Written in NVM only

EvaluatedUpto

Physical view
NVM size

InitializedUptoCurrent write point

EvaluatedUpto

LSN

WAL segment

Current write point

(n-1) th round

n th round

Experimental Setup
Performance

PGBENCH
DBT-2

Durability
Durability test
Result

Write amplification Reduction

Evaluation

32

Experimental setup
• DB server

– CPU: E5-2650 v2 x 2 (16 cores)
– Memory: 64GB
– Storage

• RAID0: 200GB SSD x 2 for data
• RAID0: 1TB ATA HD x 4 for WAL

• Client
– CPU: E7420 x 4 (16 cores)
– Memory: 8GB

• Network
– GB ether x 1

33

PGBENCH Performance

34

0 40 80 120 160
0

10000

20000

30000

40000

50000

Clients
Th

ro
ug

hp
ut

 (T
PS

)

Asy
nc

NVM Logging

Sy
nc

0 40 80 120 160
0

10000

20000

30000

40000

50000

Clients

Th
ro

ug
hp

ut
 (T

PS
)

Async

NV
M

 L
og

gi
ng

Sync

Disk-drive cache off Disk-drive cache on

DBT-2 Performance

35

0 10 20 30 40 50
0

100000

200000

300000

400000

Clients

Th
ro

ug
hp

ut
 (N

O
TP

M
)

Async

NVM Logging

Sync

0 10 20 30 40 50
0

100000

200000

300000

400000

Clients
Th

ro
ug

hp
ut

 (N
O

TP
M

)

Async

NVM Loggingg

Sync

Disk-drive cache off Disk-drive cache on

Write amplification Reduction

36

Page of the storage

Write
Write
Write
Write
Write

Write

The tail WAL block is written in at every commit

The tail WAL block is written in once

Sync.
commit

NVM
Logging

Durability test

37

table2
table1

DBMS

key value(=Kp)

while (1) {
Begin
Select value From table1 Where key = Kp
(v = value + 1)
Update table1 set value = v Where key = Kp

(… same for table 2)
End
(record v as committed transaction)

}

Fault

Transaction

Clientp

After the recovery, durability is examined by checking whether
the value of table1 and table2 is equal and
value is equal to or greater than v that each client recorded as the
result of the last transaction.

Results

• The results were just what we expected

– Durability is ensured
• Sync. commit, NVM Logging

– Durability is not ensured
• Async. commit

38

NVDIMM for DB servers
Programming support for NVM

Technical trends

39

NVDIMM in DB Servers

• NVDIMM-N Standardization
– JEDEC Hybrid Memory Task Group
– SNIA NVDIMM SIG

• Server product: HP ProLiant XL230a Server
– Up to 2 Intel® Xeon® E5-2600 v3 Series, 6/8/10/12/14/16

Cores (16)
– DDR4, (512GB max), support for NVDIMM
– …

40

http://community.hpe.com/t5/Servers-The-Right-Compute/Address-your-
Compute-needs-with-HP-ProLiant-Gen9/ba-p/6794213#.VybkulK3GA9

DB server with NVDIMM is just around the corner!!

Programming support for NVM

• pmem.io
– The Linux NVM Library builds on the Direct Access

(DAX) changes under development in Linux.
– This project focuses specifically on how persistent

memory is exposed to server-class applications
which will explicitly manage the placement of data
among the three tiers (volatile memory, persistent
memory, and storage).

41

http://pmem.io/

Conclusion

• NVM is becoming commodity
– NVDIMM is already shipped as a product
– Servers began to equipped with NVDIMM

• Benefits of NVM Logging
– Performance improvement
– Durability ensurance
– Write amplitude reduction

42

Similar to sync. commit

Almost the same as async. commit

Good for SSD lifetime

Future work

• Bring to a state acceptable for the mainline
– Cope with standard for NVM access

• libpmem is a promising candidate

– Check the operation in using real NVM

43

44

That’s it

Thank you for listening

