
Non-volatile Memory (NVM) 
Logging

2016.05.20
Takashi HORIKAWA

1



Who am I
Name

Takashi HORIKAWA, Ph. D.

Research interests
Performance evaluation of computer & communication systems, including

performance engineering of IT systems
with slightly shifting the focus of the research to CPU scalability

Papers
Latch-free data structures for DBMS: design, implementation, and evaluation, 
SIGMOD ‘13
An Unexpected Scalability Bottleneck in a DBMS: A Hidden Pitfall in Implementing 
Mutual Exclusion, PDCS ‘11
An approach for scalability-bottleneck solution: identification and elimination of 
scalability bottlenecks in a DBMS, ICPE '11
A method for analysis and solution of scalability bottleneck in DBMS, SoICT '10

2



Contents

• Introduction
• Problems to be solved
• Implementation
• Evaluation
• Technical trends
• Conclusion

3



Write Ahead Logging
Sync. vs Async. Commit
Difference in Performance
Fundamental idea for NVM Logging
Byte or Block Addressable NVM
Byte addressable NVMs

Introduction

4



Write Ahead Logging

Worker process

Shared buffer WAL buffer

Asynchronous Write Synchronous Write

Data files WAL files

Storage

Worker processWorker processWorker process

Memory

Table
Index

XLog

Transaction
processing

Widely used method to make transaction durable 

5

XLog recordTable, Index



Write Ahead Logging
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Sync. vs Async. Commit
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Sync. vs Async. Commit
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the client is notified of the transaction commit 
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Sync. vs Async. Commit
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Difference in Performance
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Fundamental idea for NVM Logging
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Fundamental idea for NVM Logging
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Byte or Block Addressable NVM
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Store instruction
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Key device in 
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Byte addressable NVMs
• Combination of existing technologies -- DRAM, SSD, battery （NVDIMM）

– AgigA Tech (Micron Technology)
– Viking  Techonogy
– SK Hynix

• Use of a new memory cell （Storage Class Memory）
– Phase Change Memory (PCM)
– Magnetic Random Access Memory (MRAM)
– Ferroelectric RAM (FRAM)
– The memristor
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Fundamental idea for NVM Logging (Again)
It is not simple than it looks
Necessary condition for Recovery
Problems

Partial write
Unreachable XLog Record
CPU cache effect

Problems to be solved
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Fundamental idea for NVM Logging
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It is not simple than it looks

• Naive implementation of NVM Logging
– Allocating WAL buffer in NVM area
– Using asynchronous commit mode

• Problems are:
– Partial write
– Unreachable XLog Record
– CPU cache effect
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Necessary condition for Recovery

• If the recovery process reads all XLR of 
transaction m correctly

transaction m is possible to be recovered

• Else transaction m will be lost
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LSN

XLRm,N-2 XLRm,N-1 XLRm,NXLog

A worker process finishes the commit of the transaction after all 
XLRs of the transaction are stored in the non-volatile memory. 



Partial write

• The recovery process will read an incomplete 
XLR
if the system crashes in the middle of writing a XLR
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XLR 1

WAL buffer

LSN

(CRC in the XLR may be effective but it is not perfect)



Unreachable XLog Record

• The recovery process cannot find a XLR of a 
committed transaction
– A worker process finishes writing of XLR 3 before 

another worker process begin to write XLR 2
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XLR 1

WAL buffer
LSN

XLR 2 XLR 3

Length1

XLog reader finds the head position of a XLR by adding  
the head position of the previous XLR and its length



CPU cache effect

• The recovery process will read inconsistent 
XLR
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Inconsistent

If the CPU internal cache uses write-back policy, a XLR written 
by the CPU does not reach to the memory immediately



Prototype architecture
Preventing partial write
Preventing an unreachable XLR
Use of Write-combined mode
GUC parameter for NVM Logging
Accessing NVM at recovery
Wrap around of WAL buffer

Implementation
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Prototype architecture
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(9.6devel at the middle of March)



Preventing partial write
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all XLR data is written in the XLog buffer.



Preventing an unreachable XLR
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Wait control

• A wait mechanism is already implemented in 
PostgreSQL
static XLogRecPtr

WaitXLogInsertionsToFinish(XLogRecPtr upto)

If any XLR with a smaller LSN than the upto parameter is not 
finished to copy in the WAL buffer, the worker process sleeps 
until all of those XLRs are copied in the WAL buffer.

NVM Logging implements the wait mechanism by using 
this function
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Use of Write-combined mode
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File system
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open mmap
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user
kernel

ext4 ext3 xfs
ext2pm

Kernel module

Write-combined mode, which is a variation of write-through,  
is set for the memory pages for pseudo NVM.



GUC parameter for NVM Logging

• NVM Logging is enabled through one GUC 
parameter (described in postgresql.conf)

– PRAM_FILE_NAME = “NVM File name”

• When PRAM_FILE_NAME is set
– XLOGShmemInit() invokes open() and mmap() to  

“NVM File name” and uses the memory area for WAL 
buffer

– CopyXLogRecordToWAL() copies XLR in WAL buffer 
according to the procedure that prevents partial write
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Accessing NVM at recovery
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XLogReader

XLog buffer in NVM

n n+1 n+2 n+3n-1n-2

minLSN maxLSN

Segment number

WAL files

XLogReader accesses NVM XLog buffer to obtain XLog records 
whose LSN is between minLSN and maxLSN

LSN



Wrap around of WAL buffer
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Wrap around of WAL buffer
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Experimental setup
• DB server

– CPU: E5-2650 v2 x 2 (16 cores)
– Memory: 64GB
– Storage

• RAID0: 200GB SSD x 2 for data
• RAID0: 1TB ATA HD x 4 for WAL

• Client
– CPU: E7420 x 4 (16 cores)
– Memory: 8GB

• Network
– GB ether x 1
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PGBENCH Performance
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DBT-2 Performance
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Write amplification Reduction
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Durability test
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table2
table1

DBMS

key value(=Kp)

while (1) {
Begin
Select value From table1 Where key = Kp
(v = value + 1)
Update table1 set value = v Where key = Kp

(… same for table 2)
End
(record v as committed transaction)

}

Fault

Transaction

Clientp

After the recovery, durability is examined by checking whether 
the value of table1 and table2 is equal and
value is equal to or greater than v that each client recorded as the 
result of the last transaction.



Results

• The results were just what we expected

– Durability is ensured
• Sync. commit, NVM Logging

– Durability is not ensured
• Async. commit
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NVDIMM for DB servers
Programming support for NVM

Technical trends
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NVDIMM in DB Servers

• NVDIMM-N Standardization
– JEDEC Hybrid Memory Task Group
– SNIA NVDIMM SIG

• Server product:  HP ProLiant XL230a Server
– Up to 2 Intel® Xeon® E5-2600 v3 Series, 6/8/10/12/14/16 

Cores (16) 
– DDR4, (512GB max), support for NVDIMM
– …
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http://community.hpe.com/t5/Servers-The-Right-Compute/Address-your-
Compute-needs-with-HP-ProLiant-Gen9/ba-p/6794213#.VybkulK3GA9

DB server with NVDIMM is just around the corner!!



Programming support for NVM

• pmem.io
– The Linux NVM Library builds on the Direct Access

(DAX) changes under development in Linux.
– This project focuses specifically on how persistent 

memory is exposed to server-class applications 
which will explicitly manage the placement of data 
among the three tiers (volatile memory, persistent 
memory, and storage).
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http://pmem.io/



Conclusion

• NVM is becoming commodity
– NVDIMM is already shipped as a product
– Servers began to equipped with NVDIMM

• Benefits of NVM Logging
– Performance improvement
– Durability ensurance
– Write amplitude reduction
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Similar to sync. commit

Almost the same as async. commit

Good for SSD lifetime



Future work

• Bring to a state acceptable for the mainline 
– Cope with standard for NVM access

• libpmem is a promising candidate

– Check the operation in using real NVM
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That’s it

Thank you for listening


