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Distributed consensus

Example consensus problems:

    I have N servers, and need exactly one of them to do something.

    N replicas receive changes concurrently, need to agree on order.

Impossible to always reach consensus under arbitrary failure.

Paxos is a probabilistic algorithm for reaching consensus.
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The Part-time Parliament (Leslie Lamport, 1998) abstract:

“Recent archaeological discoveries on the island of Paxos reveal that the 
parliament functioned despite the peripatetic propensity of its part-time 
legislators. The legislators maintained consistent copies of the parliamentary 
record, despite their frequent forays from the chamber and the forgetfulness 
of their messengers. The Paxon parliament’s protocol provides a new way of 
implementing the state-machine approach to the design of distributed 
systems.”

Paxos made Simple (Leslie Lamport, 2001) abstract:

“The Paxos algorithm, when presented in plain English, is very simple”

Paxos
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paxos(key,value) is a function that returns the same value on all 
nodes in a group, and the value is one of the inputs.

Runs in two phases:

1. Proposer asks nodes to prepare for a new proposal
Majority has to promise to participate

2. Proposer requests acceptance of a value
Majority has to accept

If majority accepts, Paxos completes, otherwise… retry.

Paxos
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Paxos: Phase 1

5

Proposer to majority: 

“Please don’t accept proposals with a lower number than i”

Acceptor:

• “Ok”
• “I already received a competing proposal j > i” 

  → Proposer sets i > j and starts over
• “I already accepted value x from proposal j < i”

  → Proposer uses the value with highest j instead of input
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Paxos: Phase 2
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Proposer to acceptors:

“Please accept value x for proposal i”

Acceptor:

• “Ok” 
• “I already received a competing proposal j > i”

→ Proposer starts over with i > j

Finally, inform all nodes of consensus (if possible).
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Why does it work?
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If a majority accepts, that means no other proposal has completed phase 1 
since you did.

Otherwise, at least one node would have rejected your proposal.

Thus, it is guaranteed that:

• other proposals will see your value when they complete phase 1
• yours is the highest proposal number that got accepted, since it was 

higher than any other proposal that completed phase 1 and no other 
node has completed phase 1 since. 

Thus nodes will always use your value.



Paxos State Machine (Multi-Paxos)

8

State machine implemented on a set of nodes using Paxos.

State is determined by a sequence of inputs (writes).

Nodes run Paxos for each write using increasing round numbers:

paxos(0, 'set x = 6')

paxos(1, 'set y = 7')

paxos(2, 'set y = 9')

Once a node knows rounds 0 to k were accepted by the majority, 
they can be applied to the local state.



Paxos State Machine
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To write a value to the distributed log at position i:

while(paxos(round,query) != query) round++;

To perform a consistent read:

while(round < max_round()) paxos(round++,'');

Each node has its own copy of the log.

‘UPDATE data SET x = 5;’

‘UPDATE data SET x = 10;’

‘UPDATE data SET x = 5;’ ‘INSERT INTO data …’ ?

‘UPDATE data SET x = 10;’

Node A Node B Node C



pg_paxos

pg_paxos is an extension for PostgreSQL that provides consistent, 
fault-tolerant table replication through Multi-Paxos

… with low throughput and high latency

❌ An alternative to streaming or logical replication.

❌ Magic Distributed PostgreSQL.

✅ A useful building block for distributed systems.
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pg_paxos
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Available on Github: https://github.com/citusdata/pg_paxos/ 

1. Basic implementation of Paxos and Multi-Paxos in PL/pgSQL

using dblink.

2. Consistent table replication implemented using Multi-Paxos by 

automatically logging and executing DML statements.

Warning: Somewhat experimental

https://github.com/citusdata/pg_paxos/


PL/pgSQL
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Surprisingly suitable language for implementing Paxos:

• Transactional semantics come for free

• Managing data is easy

• Simple networking API: dblink

• Can do RPC by remotely calling a PL/pgSQL function

• Runs on managed PostgreSQL (Amazon RDS / Heroku)



CREATE EXTENSION pg_paxos
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Metadata in pg_paxos:

pgp_metadata.group

Paxos groups in which server participates 

pgp_metadata.host

Hosts in the Paxos group

pgp_metadata.round

The Multi-Paxos log with state of each proposal

pgp_metadata.replicated_tables

Tables that are automatically replicated using pg_paxos



pg_paxos internals
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Functions in pg_paxos:

SELECT paxos(..., round_number, query)

Propose a query in a given round

or get a query by using ''

SELECT paxos_apply_log(..., round_number)

Execute queries in the log up to a specified round number

SELECT paxos_apply_and_append(..., round_number, query)

Append a query to the log and execute preceding queries



Table replication
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To replicate a table:

CREATE TABLE data (...);

SELECT paxos_create_group('pgcon','host=orig.server');

SELECT paxos_replicate_table('pgcon','data');

Queries on the data table are intercepted using executor hook.



Cluster set-up
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To join a Paxos group:

   SELECT paxos_join_group('pgcon','host=orig.server',

                                   'host=new.server');

Joining clones the state of orig.server and then logs:

   INSERT INTO pgp_metadata.host VALUES('new.server',5432,3);



Handling writes
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When you run a DML/DDL query on a replicated table, e.g.:

   UPDATE data SET greeting = 'hello' WHERE object = 'world';

Then pg_paxos appends this query to the Multi-Paxos log.

   SELECT paxos_apply_and_append(..., query);

When it knows the position of the query in the log, it first executes 

all preceding queries in the log and then executes the UPDATE.



Handling reads
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When you run a SELECT query on a replicated table, e.g.:

    SELECT greeting FROM data WHERE object = 'world';

pg_paxos finds the highest accepted round number among a 

majority and executes preceding queries.

    SELECT paxos_apply_log(..., paxos_max_group_round(...));

It knows that when the SELECT started, there was no consensus on 

higher round numbers.



Demo
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CRON1 CRON2

Load balancer

pg_paxos



Applications

Low read/write volume applications with strong consistency 
requirements, e.g.:

• Managing cluster membership
• Automated fail-over
• Job scheduler
• Data/schema migrations
• Source for metadata
• Distributed locks
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Why not Raft?

Multi-Paxos:

• … can be implemented in PL/pgSQL
• … has a simpler minimal implementation
• … can be adapted to requirements
• … is mathematically very elegant

Short answer:

• I knew Multi-Paxos and PL/pgSQL
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Questions?

marco@citusdata.com

https://github.com/citusdata/pg_paxos/ 
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