
pg_paxos: Table Replication
through Distributed Consensus

Marco Slot

marco@citusdata.com

Distributed consensus

Example consensus problems:

 I have N servers, and need exactly one of them to do something.

 N replicas receive changes concurrently, need to agree on order.

Impossible to always reach consensus under arbitrary failure.

Paxos is a probabilistic algorithm for reaching consensus.

2

The Part-time Parliament (Leslie Lamport, 1998) abstract:

“Recent archaeological discoveries on the island of Paxos reveal that the
parliament functioned despite the peripatetic propensity of its part-time
legislators. The legislators maintained consistent copies of the parliamentary
record, despite their frequent forays from the chamber and the forgetfulness
of their messengers. The Paxon parliament’s protocol provides a new way of
implementing the state-machine approach to the design of distributed
systems.”

Paxos made Simple (Leslie Lamport, 2001) abstract:

“The Paxos algorithm, when presented in plain English, is very simple”

Paxos

3

paxos(key,value) is a function that returns the same value on all
nodes in a group, and the value is one of the inputs.

Runs in two phases:

1. Proposer asks nodes to prepare for a new proposal
Majority has to promise to participate

2. Proposer requests acceptance of a value
Majority has to accept

If majority accepts, Paxos completes, otherwise… retry.

Paxos

4

Paxos: Phase 1

5

Proposer to majority:

“Please don’t accept proposals with a lower number than i”

Acceptor:

• “Ok”
• “I already received a competing proposal j > i”

 → Proposer sets i > j and starts over
• “I already accepted value x from proposal j < i”

 → Proposer uses the value with highest j instead of input

A2

A1 A3

P

Paxos: Phase 2

6

Proposer to acceptors:

“Please accept value x for proposal i”

Acceptor:

• “Ok”
• “I already received a competing proposal j > i”

→ Proposer starts over with i > j

Finally, inform all nodes of consensus (if possible).

A2

A1 A3

P

Why does it work?

7

If a majority accepts, that means no other proposal has completed phase 1
since you did.

Otherwise, at least one node would have rejected your proposal.

Thus, it is guaranteed that:

• other proposals will see your value when they complete phase 1
• yours is the highest proposal number that got accepted, since it was

higher than any other proposal that completed phase 1 and no other
node has completed phase 1 since.

Thus nodes will always use your value.

Paxos State Machine (Multi-Paxos)

8

State machine implemented on a set of nodes using Paxos.

State is determined by a sequence of inputs (writes).

Nodes run Paxos for each write using increasing round numbers:

paxos(0, 'set x = 6')

paxos(1, 'set y = 7')

paxos(2, 'set y = 9')

Once a node knows rounds 0 to k were accepted by the majority,
they can be applied to the local state.

Paxos State Machine

9

To write a value to the distributed log at position i:

while(paxos(round,query) != query) round++;

To perform a consistent read:

while(round < max_round()) paxos(round++,'');

Each node has its own copy of the log.

‘UPDATE data SET x = 5;’

‘UPDATE data SET x = 10;’

‘UPDATE data SET x = 5;’ ‘INSERT INTO data …’ ?

‘UPDATE data SET x = 10;’

Node A Node B Node C

pg_paxos

pg_paxos is an extension for PostgreSQL that provides consistent,
fault-tolerant table replication through Multi-Paxos

… with low throughput and high latency

❌ An alternative to streaming or logical replication.

❌ Magic Distributed PostgreSQL.

✅ A useful building block for distributed systems.

10

pg_paxos

11

Available on Github: https://github.com/citusdata/pg_paxos/

1. Basic implementation of Paxos and Multi-Paxos in PL/pgSQL

using dblink.

2. Consistent table replication implemented using Multi-Paxos by

automatically logging and executing DML statements.

Warning: Somewhat experimental

https://github.com/citusdata/pg_paxos/

PL/pgSQL

12

Surprisingly suitable language for implementing Paxos:

• Transactional semantics come for free

• Managing data is easy

• Simple networking API: dblink

• Can do RPC by remotely calling a PL/pgSQL function

• Runs on managed PostgreSQL (Amazon RDS / Heroku)

CREATE EXTENSION pg_paxos

13

Metadata in pg_paxos:

pgp_metadata.group

Paxos groups in which server participates

pgp_metadata.host

Hosts in the Paxos group

pgp_metadata.round

The Multi-Paxos log with state of each proposal

pgp_metadata.replicated_tables

Tables that are automatically replicated using pg_paxos

pg_paxos internals

14

Functions in pg_paxos:

SELECT paxos(..., round_number, query)

Propose a query in a given round

or get a query by using ''

SELECT paxos_apply_log(..., round_number)

Execute queries in the log up to a specified round number

SELECT paxos_apply_and_append(..., round_number, query)

Append a query to the log and execute preceding queries

Table replication

15

To replicate a table:

CREATE TABLE data (...);

SELECT paxos_create_group('pgcon','host=orig.server');

SELECT paxos_replicate_table('pgcon','data');

Queries on the data table are intercepted using executor hook.

Cluster set-up

16

To join a Paxos group:

 SELECT paxos_join_group('pgcon','host=orig.server',

 'host=new.server');

Joining clones the state of orig.server and then logs:

 INSERT INTO pgp_metadata.host VALUES('new.server',5432,3);

Handling writes

17

When you run a DML/DDL query on a replicated table, e.g.:

 UPDATE data SET greeting = 'hello' WHERE object = 'world';

Then pg_paxos appends this query to the Multi-Paxos log.

 SELECT paxos_apply_and_append(..., query);

When it knows the position of the query in the log, it first executes

all preceding queries in the log and then executes the UPDATE.

Handling reads

18

When you run a SELECT query on a replicated table, e.g.:

 SELECT greeting FROM data WHERE object = 'world';

pg_paxos finds the highest accepted round number among a

majority and executes preceding queries.

 SELECT paxos_apply_log(..., paxos_max_group_round(...));

It knows that when the SELECT started, there was no consensus on

higher round numbers.

Demo

19

CRON1 CRON2

Load balancer

pg_paxos

Applications

Low read/write volume applications with strong consistency
requirements, e.g.:

• Managing cluster membership
• Automated fail-over
• Job scheduler
• Data/schema migrations
• Source for metadata
• Distributed locks

20

Why not Raft?

Multi-Paxos:

• … can be implemented in PL/pgSQL
• … has a simpler minimal implementation
• … can be adapted to requirements
• … is mathematically very elegant

Short answer:

• I knew Multi-Paxos and PL/pgSQL

21

22

Questions?

marco@citusdata.com

https://github.com/citusdata/pg_paxos/

mailto:marco@citusdata.com
mailto:marco@citusdata.com
https://github.com/citusdata/pg_paxos/
https://github.com/citusdata/pg_paxos/

23

24

25

26

