
Eventual Heat Death
The Ultimate Consistency

Thomas Munro — PGCon 2016

An anonymous company’s
non-relational datastore

Site S100

Site S200

Site S300

Asset A001

Asset A002

Asset A003

Asset A004

Employee E1

Employee E2

Employee E3

Employee E4

Employee E5

Things point to other things,
and vice versa

Site S100

Site S200

Site S300

Asset A001

Asset A002

Asset A003

Asset A004

Employee E1

Employee E2

Employee E3

Employee E4

Employee E5

Time for some concurrent updates!

Things point to other things,
and … wait, what?

Site S100

Site S200

Site S300

Asset A002

Asset A003

Asset A004

Employee E1

Employee E2

Employee E3

Employee E4

Employee E5

Two-way Pointer
Synchronization Report

“Eventual Constraints
Team”

Relational
data banks

We don’t have problems like these,
because we have SQL constraints

• UNIQUE (foo, bar)

• FOREIGN KEY site_id  
REFERENCES site(id)

• CHECK (foo < 42)

But wait, there’s more! Standard
SQL says you can do this:

• “There shouldn’t be more than 15 students in any class”

• “No two classes containing the same student or teacher
may be scheduled at the same time”

• CHECK ( 
 (SELECT COUNT(*)  
 FROM enrolment e  
 WHERE e.class_id = class_id) <= 15)

• CREATE ASSERTION the_world_is_sane  
CHECK ((SELECT …) = 42);  

ERROR: cannot use subquery
in check constraint

• No existing RDBMS supports general CHECK*

• It’s quite hard to implement without concurrency

• It’s really hard to implement with concurrency

• SERIALIZABLE could help with that, but it’s
broken, feared and/or runs like molasses

• Application code can deal with such high level
stuff anyway, right?

*A couple of RDBMSs accept the syntax but fail to enforce the constraint when referenced data changes

Crazy idea:
• Think really hard and write an analyser that can

efficiently determine which constraints need to be
checked when rows in a given table are modified,
and how

• Note: The same type of machinery will probably
be needed for incremental materialized view
maintenance

• Require SERIALIZABLE isolation for DML
involving tables referenced by general checks

Example
• BEGIN;  

INSERT INTO enrolment VALUES (‘SQL101’, 1234); 
ERROR: insufficient transaction isolation for
constraint “max_class_size_check"  
HINT: Run the statement again in transaction
isolation level SERIALIZABLE  
ROLLBACK;

• BEGIN TRANSACTION ISOLATION LEVEL SERIALIZABLE; 
INSERT INTO enrolment VALUES (‘SQL101’, 1234); 
ERROR: new row for relation “enrolment" violates
check constraint “max_class_size_check"  
ROLLBACK;

A killer app for SSI?
• Users often ask how to impose such constraints,

and know how to express them as queries

• Implementing equivalent concurrency-safe logic,
especially in READ COMMITTED, is hard and
error-prone (if you think SERIALIZABLE is only for
experts, wait till you try our other levels!)

• We may have the only RDBMS that actually could
implement general SQL CHECK without becoming
unusable, thanks to our amazing SSI system

<EOF>

