
Eventual Heat Death
The Ultimate Consistency

Thomas Munro — PGCon 2016



An anonymous company’s 
non-relational datastore
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Things point to other things, 
and vice versa
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Time for some concurrent updates!



Things point to other things, 
and … wait, what?
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Two-way Pointer 
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“Eventual Constraints 
Team”



Relational 
data banks



We don’t have problems like these, 
because we have SQL constraints

• UNIQUE (foo, bar) 

• FOREIGN KEY site_id  
REFERENCES site(id) 

• CHECK (foo < 42)



But wait, there’s more!  Standard 
SQL says you can do this:

• “There shouldn’t be more than 15 students in any class” 

• “No two classes containing the same student or teacher 
may be scheduled at the same time” 

• CHECK (  
  (SELECT COUNT(*)  
     FROM enrolment e  
    WHERE e.class_id = class_id) <= 15) 

• CREATE ASSERTION the_world_is_sane  
CHECK ((SELECT …) = 42);  



ERROR:  cannot use subquery 
in check constraint

• No existing RDBMS supports general CHECK* 

• It’s quite hard to implement without concurrency 

• It’s really hard to implement with concurrency 

• SERIALIZABLE could help with that, but it’s 
broken, feared and/or runs like molasses 

• Application code can deal with such high level 
stuff anyway, right?

*A couple of RDBMSs accept the syntax but fail to enforce the constraint when referenced data changes



Crazy idea:
• Think really hard and write an analyser that can 

efficiently determine which constraints need to be 
checked when rows in a given table are modified, 
and how 

• Note: The same type of machinery will probably 
be needed for incremental materialized view 
maintenance 

• Require SERIALIZABLE isolation for DML 
involving tables referenced by general checks



Example
• BEGIN;  

INSERT INTO enrolment VALUES (‘SQL101’, 1234); 
ERROR: insufficient transaction isolation for 
constraint “max_class_size_check"  
HINT: Run the statement again in transaction 
isolation level SERIALIZABLE  
ROLLBACK; 

• BEGIN TRANSACTION ISOLATION LEVEL SERIALIZABLE; 
INSERT INTO enrolment VALUES (‘SQL101’, 1234); 
ERROR:  new row for relation “enrolment" violates 
check constraint “max_class_size_check"  
ROLLBACK;



A killer app for SSI?
• Users often ask how to impose such constraints, 

and know how to express them as queries 

• Implementing equivalent concurrency-safe logic, 
especially in READ COMMITTED, is hard and 
error-prone (if you think SERIALIZABLE is only for 
experts, wait till you try our other levels!) 

• We may have the only RDBMS that actually could 
implement general SQL CHECK without becoming 
unusable, thanks to our amazing SSI system



<EOF>


