. SPPPL
Still using 2088
Windows 3.17 [E

| MICROSOFT.
So why stick to WINDOWS.

S I . 9 : 2 ? Version 3.1
|
Copyright © Microsoft Corporation 1985-1992
&ll Rights Reserved.

@ModernSQL in PostgreSQL
@MarkusWinand

SQL 1999

LATERAL

L ATERAL Belore SQL: 1999

Inline views can't refer to outside the view:

SELECT *
FROM t1
JOIN (SELECT *

FROM t2
WHERE t2.X
) inline view

L ATERAL Belore SQL: 1999

Inline views can't refer to outside the view:

SELECT *
FROM t1
JOIN (SELECT *
FROM t2 p

WHEREwlan?}&
) inline vie ,t}/lﬁr

ON (inline view.x = tl.x)

LATERAL Since SO 1999

SQL:99 LATERAL views can:

40

SELECT * Jalid ‘f)ﬁ‘gg/lL

FROM t1 L A ord
JOIN LATERAL (SELECT * keY

Lut FROM t2

d5e/£rg§wr€d WHERE t2.x

) inline view

But WHY"

LATERAL and table functions

Join table functions:

SELECT t1.1id, tf.*
FROM t1
JOIN LATERAL table function(tl.id) tf
ON (true)

Note: This is PostgreSQL specific. LATERAL IS
even optional here.

LATERAL and lop-N per Group

Apply LIMIT per row from previous table:

SELECT top products.*
FROM categories c
JOIN LATERAL (SELECT *
FROM products p
WHERE p.cat = c.cat
ORDER BY p.rank DESC
LIMIT 3
) top products

LATERAL and Mult-Source Top-IN

Get the 10 most recent news for subscribed topics:

SELECT n.*
FROM news n
JOIN subscriptions s
ON (n.topic = s.topic)
WHERE s.user = ?
ORDER BY n.created DESC
LIMIT 10

LATERAL and Mult-Source Top-IN

Limit (time=236707 rows=10) égvzykp
-> Sort (time=236707 rows=10) Sdtce
Sort Method: top-N heapsort Mem: 30kB
-> Hash Join (time=233800 rows=905029)
‘§7 -> Seg Scan on subscriptions s
SN (time=369 rows=80)
é3§§ -> Hash (time=104986 rows=10"7)
% -> 5eq Scan on news n
(time=91218 rows=10"7)
Planning time: 0.294 ms
Execution time: 236707.261 ms

LATERAL and Mult-Source Top-IN

Limit (time=236707 s=10) So,
-> Sort (times Why
Sort Meth producing Mem: 30kB
-> Hash Joi 700 roai;dé rows=905029)
‘§7 -> Seg Scan on subscriptions s
S (time=369 rows=80
‘ﬁo% -> Hash (time=10498
>
U

—

.0l 1en Chere

are only SO
subscriplions?

-> Seg Scan on
(time=91218

Planning time: 0.294 ms
Execution time: 236707.261 ms

LATERAL and it Soce Top-IN

Limit (ti) On/y Zhe 10 rrost
-> Sort ‘AL Yec
| recent prer S wbs cr/pz‘/ OoN, o
"t you need . 30kB
05029)
<2 10NS S

time=369 rows=80)
Hash (time=104986 rows=10"7)
-> Seg Scan on news n
(time=91218 rows=10"7)
time: 0.294 ms
time: 236707.261 ms

w —

LATERAL and Mult-Source Top-IN

SELECT n.*
FROM subscriptions s
JOIN LATERAL (SELECT *
FROM news n
WHERE n.topilc = s.topic
ORDER BY n.created DESC
LIMIT 10
) top news ON (true)
WHERE s.user 1d = ?
ORDER BY n.created DESC
LIMIT 10

LATERAL and Multl-50

Limit (time=2.488 rows=10)
-> Sort (time=2.487 rows=10)
-> Nested Loop (time=2.339 rows=800)
-> Index Only Scan using pk on s

(time=0.042 rows=80)

-> Limit

(time=0.027 rows=10 loops=80)
-> Index Scan Ba .
using news_td 100000 ¢res
Planning time: 0.161 ms Faster
Execution time: 2.519 ms

Linuted Zo 10
Zines # of
subscriptions

LATERAL Inan Nutsnel
LATERAL is the "for each" loop of SQL
LATERAL plays well with outer joins
LATERAL Is great for Top-N subqueries

LATERAL can join table functions (unnest!)

LATERAL Avallablity (5QL: 1999

o = M 1N ~ O «A M
o O O O O O ««H
o ©O© O O O O O O
— ON ON (N (N (N (N

DB2 LUW
I O A
MySQL

ST -
{11gR1o 2 Oracle

PostgreSQL
UL L
2005 SQL Server
L L |
SQLite

" Undocumented. Requires setting trace event 22829.
L ATERAL is not supported as of SQL Server 2014 but [CROSS|OUTER] APPLY can be used for the same effect.

WLTH

(Common Table Expressions)

WITH Belore SQL 99

Nested queries are hard to read:

SELECT ..
FROM (SELECT ..
FROM t1l
JOIN (SELECT .. FROM ..
) a ON (..)
) b
JOIN (SELECT .. FROM ..
) ¢ ON (..)

WITH Belore SQL 99

Nested queries are hard to read:

SELECT ..
FROM (SELECT ..
FROM t1 UnderZ
JOIN (SELECT .. FROM .. 2/1°
) a ON (..)
) b

JOIN (SELECT .. FROM ..
) ¢ ON (..)

WITH Belore SQL 99

Nested queries are hard to read:

SELECT ..
FROM (SELECT .. g, 2hiS -
FROM t1

JOIN (SELECT .. FROM ..

) a ON (..)
) b
JOIN (SELECT .. FROM ..
) ¢ ON (..)

WITH Belore SQL 99

Nested queries are hard to read:

SELECT ..
FROM (SELECT ..
FROM t1
JOIN (SELECT .. FROM ..
) a ON (..)
) b /S -
JOIN (SELECT .. FROM ./ /%"
) ¢ ON (..)

WITH Belore SQL 99

Nested queries are hard to read:

' Lrst line makes SensSe
SELECT {na//y Zhe r

FROM (SELECT ..
FROM t1l
JOIN (SELECT .. FROM ..
) a ON (..)
) b
JOIN (SELECT .. FROM ..
) ¢ ON (..)

WITH Since 5QL 99

CTEs are statement-scoped views:

WITH
a (cl, c2, c3)
AS (SELECT c1, c2, c3 FROM ..),

WITH Since 5QL 99

CTEs are statement-scoped views:
Keya)ora/

a (cl, c2, c3)
AS (SELECT c1, c2, c3 FROM ..),

WITH Since 5QL 99

CTEs are statement-scoped views:
A/a/y/e of CTf and (/]8/‘8

WITH oic‘/ona/> column names
AS (SEL cl, c2, c3 FROM ..),

WITH Since 5QL 99

CTEs are statement-scoped views:

WITH

a (c1 Definition

WITH Since 5QL 99

CTEs are statement-scoped views:

WITH Irntrodeuces

d (Cl; C2, C3) dhof/lel‘ C7”£

AS (SELECT c1, c2, c3 FROM . @
DOHZ‘ e 8@2‘

AJITY/

WITH Since 5QL 99

CTEs are statement-scoped views:

WITH

(a)(c1l, c2, c3)
ECT c1, c2, c3 FROM ..),

AS (SELECT\c4, ..

FROM 1May refer o
JOIN(a) prevs

reviows C7TEs
ON)
)

WITH Since 5QL 99

b (c4, ..)
AS (SELECT c4, ..
FROM t1
JOIN a
ON (..)

) Third CTE
AS (SELECT .. FROM ..)

SELECT ..
FROM b JOIN c ON (..)

WITH Since 5QL 99

b (c4, ..)
AS (SELECT c4, ..
FROM t1
JOIN a
ON (..)

)
c (..)
AS (SELECT .. FROM .0 Yo commal

SELECT ..
FROM b JOIN c ON (..)

WITH Since 5QL 99

b (c4, ..)
AS (SELECT c4, ..
FROM t1

JOIN a
ON (..)

)

c (..)
AS (SEL

SELECT ..
FROM b JOIN c ON (..)

Mai n Query

CWITH Since SQL 99

WITH
a (cl, c2, c3)
AS (SELECT cl1, c2, c3 FROM ..),

b (c4, ..)
AS (SELECT c4, .. g
FROM t1 K e on
JOIN a 40
ON (..) tof
) >

c (..)
AS (SELECT .. FROM ..)

SELECT ..
FROM b JOIN c ON (..)

WITH In an Nutshel

WITH are the "private methods" of SQL
WITH views can be referred to multiple times
WITH allows chaining instead of nesting

WITH Is allowed where SELECT Is allowed

INSERT INTO tbl
WITH ... SELECT ...

WITH PostgreSCQL Farticulanties

In PostgreSQL WITH views are more like
materialized views:

WITH cte AS CTE Scan on cte
(SELECT * (rows=6370)

FROM news) Filter: topic =1
SELECT * CTE cte

FROM cte -> Seg Scan on news

WHERE topic=1 (rows=10000001)

WITH PostgreSCQL Farticulanties

In Postgre
materialize

WITH cte *
(SELECT *
FROM news)
SELECT *
FROM cte
WHERE topic=1

C7TE
doesn
,énow déo&(i‘
the owler
£i/Zer

QWS are more like

CTE Scan on cte

(rows=6370)

Filter: topic =1
CTE cte

-> Seq Scan on news
(rows=10000001)

WITH PostgresQl

“articulanties

Normal views and inline-views support

‘predicate pushdown'™:

SELECT * Bitmap Heap Scan
FROM (on news (rows=6370)
SELECT * ->Bitmap Index Scan

FROM news on

idx (rows=6370)

) n Cond: topic=1

WHERE topic=1;

WITH PostgreSCQL Farticulanties

PostgreSQL 9.1+ allows INSERT, UPDATE
and DELETE within WITH:

WITH deleted rows AS (
DELETE FROM source tbl

RETURNING *

)
INSERT INTO destination tbl

SELECT * FROM deleted rows;

WITH Availability (5QL:99)

M
mOSOOO
— ON (N (N (N N

0

0

0
2011

0

DB2 LUW
MySQL
Oracle
PostgreSQL
SQL Server
SQLite

"'Only allowed at the very begin of a statement. E.g. WITH...INSERT...SELECT.
"' Only for top-level SELECT statements

WLITH RECURSIVE

(Common Table Expressions)

WITH RECURSIVE Before SQL:99

WITH RECURSIVE Before SQL:99

(This page is intentionally left blank)

WITH RECURSIVE Since SO 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE cte (n)
AS (SELECT 1
UNION ALL
SELECT n+1
FROM cte
WHERE n < 3)
SELECT * FROM cte;

WITH RECURSIVE Since SO 99

Recursive common table expressions may refer to

themselves in the second leg of a UNION [ALL]:
Keywora/

WITH cte (n)
AS (SELECT 1

UNION ALL
SELECT n+1
FROM cte
WHERE n < 3)
SELECT * FROM cte;

WITH RECURSIVE Since SO 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

/amn /;\si
WITH RECURSIVE cte @S,,Oandaiory here

AS (SELECT 1
UNION ALL
SELECT n+1
FROM cte
WHERE n < 3)
SELECT * FROM cte;

WITH RECURSIVE Since SO 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE cte (n)
AS ?@ercaZ‘ed £irst
UNION ALL
SELECT n+1
FROM cte
WHERE n < 3)
SELECT * FROM cte;

WITH RECURSIVE Since SO 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

AS (SELECT(1)

UNION ALL
SELECT n+1
FROM cte
WHERE n < 3)
SELECT * FROM cte;

WITH RECURSIVE Since SO 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE
AS (SELECT 1

UNION ALL /¢
su
SELECT n+1// K® Lle
ViS!
FROM(cte)/ ., ice

WHERE n <¢3)
SELECT * FROM @

WITH RECURSIVE Since SO 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE
AS (SELECT 1
UNION ALL

SELECT n+1

SELECT * FROM @

WITH RECURSIVE Since SO 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE cte (n)
AS (SELECT 1
UNION AlL
ELECT n+1

ON ~
FROM cte .5"/1 1
/
WHERE n < 3}~ '~ ., ted

SELECT * FROM cte;

WITH RECURSIVE Since SO 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

(eéa/f
WITH RECURSIVE Cte (n) Sen? ZAhere
AS (SELECT 1 agas n
UNION ALL n
SELECT (n+1
FROM cte 1

WHERE n < 3)
SELECT * FROM cte;

WITH RECURSIVE Since SO 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE
AS (SELECT 1
UNION

SELECT (n+1}

WHERE n < 3)
SELECT * FROM cte;

WITH RECURSIVE Since SO 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE
AS (SELECT 1

WHERE n < 3)
SELECT * FROM cte;

WITH RECURSIVE Since SO 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE
AS (SELECT 1

UNION Iz‘ '5 a N
SELECT @+1Y /oop !
FROM (cte)
WHERE n < 3) 2

SELECT * FROM cte;

WITH RECURSIVE Since SO 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE
AS (SELECT 1

N
1
WHERE n < 3) 2
SELECT * FROM cte; 3

WITH RECURSIVE Since SO 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE cte (n)
AS (SELECT 1

UNION ALL X N
n= ' _— -
SELECT n+1 273 _ 1 ,

WHERE(:::::) 2

SELECT * FROM cte: LeoogZ. 3
; s

WITH RECURSIVE Use Cases

e Row generators (previous example)
(generate series is proprietary)

® Processing graphs
(don't forget the cycle detection!)

e Generally said: Loops that...
» ... pass data to the next iteration
» ... heed a "dynamic” abort condition

WITH RECURSIVE In a Nutshel

WITH RECURSIVE is the while of SQL

WITH RECURSIVE "supports” infinite loops
(SQL Server requires setting MAXRECURSION 9)

Except PostgreSQL, databases generally
don't require the RECURSIVE keyword.

SQL Server & Oracle don’t even know the
keyword, but allow recursive CTEs anyway.

WITH RECURSIVE Avalabiity

o = M 1N ~ O «A M
o O O O O O ««H
o ©O© O O O O O O
— ON ON (N (N (N (N

DB2 LUW
MySQ | (0]
Oracle
PostgreSQL
SQL Server
SQLite

I Feature request #16244 from 2006-01-06
U Default limit of 100 iterations. Use OPTION (MAXRECURSION @) to disable
“I'Only for top-level SELECT statements

SQL 2003

FILTER

FILTER Belore S 2003

PIvot table: Years on the Y asis, Month on X axis:

SELECT YEAR,

SUM(CASE WHEN MONTH = 1
THEN sales ELSE © END) JAN,

SUM(CASE WHEN MONTH = 2
THEN sales ELSE © END) FEB,..

FROM sale data
GROUP BY YEAR

FILTER Since 5QL 2003

SQL:2003 has FILTER:

SELECT YEAR,
SUM(sales) FILTER (WHERE MONTH
SUM(sales) FILTER (WHERE MONTH

1) JAN,
2) FEB,

FROM sale data
GROUP BY YEAR;

FILTER Avallaoiity (5QL: 2003,

1999
2001
2003

005
2007
2009
2011
2013

A

DB2 LUW
MySQL
Oracle
PostgreSQL
SQL Server
SQLite

OVER

and

PARTITION BY

OVER Before SQL: 2003

Show percentage of department salary:
WITH total salary by department

OVER Before SQL: 2003

Show percentage of department salary:

WITH total salary by department
AS (SELECT dep, SUM(salary) total
FROM emp
GROUP BY dep)

OVER Before SQL: 2003

Show percentage of department salary:

WITH total salary by department
AS (SELECT dep, SUM(salary) total
FROM emp
GROUP BY dep)
SELECT dep, emp _id, salary,
salary/ts.total*100 "% of dep”
FROM emp
JOIN total salary by department ts
ON (emp.dep = ts.dep)

Show percentage of department salary:

WITH total salary by department
AS (SELECT dep, SUM(salary) total
FROM emp
GROUP BY dep)
SELECT dep, emp _id, salary,
salary/ts.total*100 "% of dep”
FROM emp
JOIN total salary by department ts
ON (emp.dep = ts.dep)

WITH total salary_by_department
AS (S ‘ ary) total

FROM emp
GROUP BY dep)
SELECT dep, emp _id, salary,
salary/ts.total*100 "% of dep”
FROM emp
JOIN total salary by department ts
ON (emp.dep = ts.dep)

WITH total salary_by_department
AS (S ‘ ary) total

FROM emp
GROUP BY dep)
SELECT dep, emp _id, salary,
salary/ts.total*100 "% of dep”

FROM emp
JOIN total_salary_by_department<::>
ON (emp.dep = ts.dep)

Show percentage of department salary:

WITH total salary by department
AS (SELECT dep, SUM(salary) total
FROM emp
GROUP BY dep)
SELECT dep, emp _id, salary,
salary/ts.total*100 "% of dep”
FROM emp
JOIN total salary by department ts
ON (emp.dep = ts.dep)

OVER Before SQL: 2003

GROUP BY =

DISTINCT

|
Aggregates

OVER &Since 5012003

Build aggregates without GROUP BY:

SELECT dep, emp id, salary,
salary/SUM(salary)
OVER(PARTITION BY dep)
* 100 "% of dep”
FROM emp

OVER How It Works

SELECT dep,
salary

FROM emp;

dep |salary
1 1000
22 | 1000
22 | 1000
333 | 1000
333 | 1000
333 | 1000

OVER How It Works

SELECT dep,
salary,

FROM emp;

dep |salary
1 1000
22 | 1000
22 | 1000
333 | 1000
333 | 1000
333 | 1000

OVER How It Works

SELECT dep,
salary,
SUM(salary)

FROM emp;

dep |salary
1 1000
22 | 1000
22 | 1000
333 | 1000
333 | 1000
333 | 1000

OVER How It Works

SELECT dep,
salary,
SUM(salary)
OVER ()

FROM emp;

dep |salary
1 1000
22 | 1000
22 | 1000
333 | 1000
333 | 1000
333 | 1000

OVER How It Works

SELECT dep,
salary,
SUM(salary)
OVER ()

FROM emp;

dep |salary
1 1000
22 | 1000
22 | 1000
333 | 1000
333 | 1000
333 | 1000

OVER How It Works

SELECT dep,
salary,
SUM(salary)
OVER ()

FROM emp;

dep |salary
1 1000 | 6000
22 | 1000 | 6000
22 | 1000 | 6000
333 | 1000 | 6000
333 | 1000 | 6000
333 | 1000 | 6000

OVER How It Works

SELECT dep,
salary,
SUM(salary)

FROM emp;

dep |salary
1 1000
22 | 1000
22 | 1000
333 | 1000
333 | 1000
333 | 1000

OVER How It Works

I dep,
salary,
SUM(salary)

M1 emp;

dep |salary
1 1000
22 | 1000
22 | 1000
333 | 1000
333 | 1000
333 | 1000

OVER How It Works

I dep,
salary,
SUM(salary)
OVER(PARTITION BY dep)
M1 emp;

dep |salary
1 1000
22 | 1000
22 | 1000
333 | 1000
333 | 1000
333 | 1000

OVER How It Works

I dep,
salary,
SUM(salary)
OVER(PARTITION BY dep)
M1 emp;

dep |salary
1 1000
22 | 1000
22 | 1000
333 | 1000
333 | 1000
333 | 1000

OVER How It Works

I dep,
salary,
SUM(salary)
OVER(PARTITION BY dep)
M1 emp;

dep |salary| ts
1 1000 | 1000
22 | 1000 | 2000
22 | 1000 | 2000
333 | 1000 | 3000
333 | 1000 | 3000
333 | 1000 | 3000

OVER In aNutshel

OVER may follow any aggregate function

OVER defines which rows are visible at each row
(it does not [imit the result in any way)

OVER() makes all rows visible at every row

OVER(PARTITION BY X) segregates like GROUP BY

OVER

and

ORDER BY

OVER Before SQL: 2003

Calculating a running total:

SELECT txid, value,

FROM transactions txl
WHERE acnt = ?
ORDER BY txid

OVER Before SQL: 2003

Calculating a running total:

SELECT txid, value,
(SELECT SUM(value)
FROM transactions tx2
WHERE tx2.acnt = txl.acnt
AND tx2.txid <= tx1l.txid) bal
FROM transactions tx1l

WHERE acnt = ?
ORDER BY txid

OVER Before SQL: 2003

Calculating a running total:

SELECT txid, value,
(SELECT SUM(value)
FROM trar

bal

OVER Before SQL: 2003

Before SQL:2003 running totals were awkward:

» Requires a scalar sub-select or self-join

» Poor maintainability (repetitive clauses)

» Poor performance

The only real answer was:

Do 1t In the application

OVER &Since 5012003

With SQL:2003 you can narrow the window:

SELECT txid, value,
SUM(value)
OVER(ORDER BY txid
ROWS
BETWEEN UNBOUNDED PRECEDING
AND CURRENT ROW) bal
FROM transactions tx1l
WHERE acnt = ?
ORDER BY txid

OVER &Since 5012003

With OVER (ORDER BY ..) a new type of
functions makes sense:

» ROW_NUMBER

» Ranking functions:
RANK, DENSE RANK, PERCENT RANK,
CUME DIST

OVER Avalapbllity (5QL 2003

o = M 1N N~ O ~ ™M
o O O O O O ™ o
o O O O O O O O
— ON ON (N (N (N (N

“I'Feature request #35893 from 2008-04-08

DB2 LUW
MySQ | (0]
Oracle
PostgreSQL
SQL Server
SQLite

WLITHIN GROUP

WITHIN GROUP Before SQL: 2003

Getting the median:

SELECT
FROM
JOIN

ON

GROUP
HAVING

dl.val
data dl
data d2
(dl.val < d2.val
OR (dl.val=d2.val AND dl.id<d2.id))
BY dl.val
count(*) =
(SELECT FLOOR(COUNT(*)/2)
FROM data)

WITHIN GROUP since s 2003

SQL:2003 introduced ordered-set functions...
Mediar
SELECT PERCENTILE DISC

WITHIN GROUP (ORDER BY val)

A)/]/C/’l valee?

WITHIN GROUP since s 2003

SQL:2003 introduced ordered-set functions...

SELECT PERCENTILE DISC(©.5)
WITHIN GROUP (ORDER BY val)
FROM data

WITHIN GROUP Availability

OO T OO 10 N~ O = o
o O O O O O ™ v
O O O O O O O O
- AN N AN N N N «

DB2 LUW
MySQL
Oracle
PostgreSQL
2012° SQL Server
SQLite

° Only as window function (OVER required). Feature request 728969 closed as "won't fix"

SQL 2008

OVER

OVER Before SQL 2008

Calculate the difference to a previous row:

WITH numbered data AS (
SELECT *,
ROW _NUMBER() OVER(ORDER BY Xx) rn
FROM data)

OVER Before SQL 2008

Calculate the difference to a previous row:

WITH numbered data AS (

SELECT *,
ROW NUMBER() OVER(ORDER BY Xx) rn

FROM data)
SELECT cur.*, cur.balance-prev.balance
FROM humbered data cur
LEFT JOIN numbered data prev
ON (cur.rn = prev.rn-1)

OVER &Since 5012008

SQL:2008 can access other rows directly:

SELECT *, balance - LAG(balance)
OVER(ORDER BY x)
FROM data

OVER &Since 5012008

SQL:2008 can access other rows directly:

SELECT *, balance - LAG(balance)
OVER(ORDER BY x)
FROM data

Avallable functions:
LEAD / LAG

FIRST VALUE / LAST VALUE
NTH VALUE(col, n) FROM FIRST/LAST
RESPECT/IGNORE NULLS

OVER Avallapility (5QL 2008

o = M 1N ~ O «A M
o O O O O O ««H
o ©O© O O O O O O
— O &N N NN NN

9.5 " DB2 LUW
MySQL
Oracle
PostgreSQL
2012%SQL Server
SQLite

‘8i[”

"' No NTH_VALUE as of DB2 LUW 10.5

"I'No NTH_VALUE and IGNORE NULLS until Oracle release 11gR2

I No support for IGNORE NULLS and FROM LAST as of PostgreSQL 9.4
BI'No NTH_VALUE as of SQL Server 2014

FETCH FIRST

FETCH FIRST Belore SQL 2008

Limit the number of selected rows:

SELECT *
FROM (SELECT *,
ROW _NUMBER() OVER(ORDER BY Xx) rn
FROM data) numbered data
WHERE rn <=10

FETCH FIRST Belore SQL 2008

Limit the number of seleatad rOows:
SELECT * Danipnt |
FROM (SF /oi's Zake
R L TMTT)ER BY X) rn
FROM d2& (o 702)

WHERE rn <

FETCH FIRST Since o0 2008

SQL:2008 has FETCH FIRST n ROWS ONLY:

SELECT *
FROM data
ORDER BY x
FETCH FIRST 10 ROWS ONLY

FETCH FIRST Avallanilty

' 1DB2 LUW

9.3 | MySQL

12c Oracle

PostgreSQL

. 02012 SQL Server
2.1.0% SQLite

S:£1999

' EFarliest mention of LIMIT. Probably inherited from mSQL

" Functionality available using LIMIT

“ISELECT TOP n ... SQL Server 2000 also supports expressions and bind parameters
Bl Functionality available using LIMIT

SQL 2017

OFFSET

OFFSET Belore SQL 20171

Skip 10 rows, then deliver only the next 10:

SELECT *
FROM (SELECT *,
ROW _NUMBER() OVER(ORDER BY Xx) rn
FROM _dz=

FETCH FIRST 20 ROWS ONLY

) numbered date

WHERE

OFFSET Since Q20T

SQL:2011 introduced OFFSET, unfortunately:

SELECT *
FROM data
ORDER BY x
OFFSET 10 ROWS
FETCH NEXT 10 ROWS ONLY

OFFSET Is =VIL

http://use-the-index-luke.com/no-offset

OFFSET Avallapility (5QL:2017)

o = M 1N ~ O «A M
o O O O O O ««H
o ©O© O O O O O O
— ON ON (N (N (N (N

DB2 LUW
3.20.3" MySQL
Oracle
PostgreSQL
SQL Server
SQLite

"' Requires enabling the MySQL compatlblllty vector: db2set DB2_COMPATIBILITY_VECTOR=MYS
WLIMIT [offset,] 11m1t "With this it's easy to do a poor man's next page/previous page WWW application."
“I'The release notes say "Added PostgreSQL compatible LIMIT syntax"

AS OF

AS OF Beiore SQL 2077

INSERT
UPDATE
DELETE

are
DESTRUCTIVE

AS OF Since QL2011

Tables can be system versioned:

CREATE TABLE t (...,
start _ts TIMESTAMP(9) GENERATED
ALWAYS AS ROW START,
end_ts TIMESTAMP(9) GENERATED
ALWAYS AS ROW END,

PERIOD FOR SYSTEM TIME (start ts, end ts)
) WITH SYSTEM VERSIONING

AS OF Since QL2011

INSERT ... (ID, DATA) VALUES (1, 'X")

AS OF Since QL2011

INSERT ... (ID, DATA) VALUES (1,
<
ID | Data start_ts end_ts
1 X 10:00:00

X

AS OF Since QL2011

INSERT ... (ID, DATA) VALUES (1, 'X")

<

ID | Data | start _ts end_ts
1 X 10:00:00

UPDATE ... SET DATA = 'Y’

<

ID | Data | start _ts end_ts
1 X 10:00:00 11:00:00
1 Y 11:00:00

AS OF Since QL2011

UPDATE . SET DATA = "Y'

<~

ID | Data | start ts end ts

1 X 10:00:00 11:00:00

1 Y 11:00:00

DELETE . WHERE ID =1
<

ID | Data | start ts end ts

1 X 10:00:00 11:00:00

1 Y 11:00:00 12:00:00

AS OF Since QL2011

ID | Data | start ts end ts
1 X 10:00:00 | 11:00:00
1 Y 11:00:00 12:00:00

Although multiple versions exist, only the “current”
one Is visible per default.

After 12:00:00, SELECT * FROM t doesn't return
anything anymore.

AS OF Since QL2011

ID | Data | start ts end ts
1 X 10:00:00 | 11:00:00
1 Y 11:00:00 12:00:00

With AS OF you can query anything you like:

SELECT *
FROM t FOR SYSTEM TIME AS OF
TIMESTAMP '2015-04-02 10:30:00°

e

ID | Data | start ts end_ts
1 X 10:00:00 11:00:00

SYSTEM_TIME AS OF Avallanilty

DB2 LUW
MySQL
Oracle
PostgreSQL
SQL Server
SQLite

10gR1™

' Third column required (tx id), history table required.
"' Functionality available using Flashback
“"Temporal Databases: Track historical changes" mentioned in SQL Server 2016 datasheet

SYSTEM_TIME AS OF Avallanilty

N\

10.1% DB2 LUW
MySQL
Oracle
PostgreSQL

B SQL Server
e I I O O O |
SQLite

fedlures

annoiunced for

S&L Server

' Third column required (tx id), history table required.
"' Functionality available using Flashback
“"Temporal Databases: Track historical changes" mentioned in SQL Server 2016 datasheet

WITHOUT OVERLAPS

WITHOUT OVERLAPS

Sefore SQ)

Prior SQL:2011 it was not possible to define

constraints that avoid overlapping periods.

Workaro

U

but Nno fu

nds are possible,

M

. CREATE TRIGGER

2011

WITHOUT OVERLAPS Since SQL 20717

SQL:2011 introduced temporal and bi-temporal
features —e.q., for constraints:

PRIMARY KEY (id, period WITHOUT OVERLAPS)

PostgreSQL 9.2 introduced range types and
"exclusive constraints” which can accomplish the
same effect:

EXCLUDE USING gist
(id WITH =, period WITH &&)

Temporal/Bi-Temporal SQL

SQL:2011 goes way further.

Please read these papers to get the idea:

Temporal features in SQL:2011

http://cs.ulb.ac.be/public/ media/teaching/infoh415/tempfeaturessql2011.pdf

What's new in SQL:20117?

http://www.sigmod.org/publications/sigmod-record/1203/pdfs/10.industry.zemke. pdf

WITHOUT OVERLAPS Avalabiity

oo = M 1~ O 4 ™M
O © O O O O «H o
OO O O O O O O o
— N N N N N N

DB2 LUW
MySQL
Oracle'*
PostgreSQL
SQL Server

° Minor differences: PERIOD without FOR; period name must be BUSINESS TIME
' Oracle 12c has partial temporal support, but no direct equivalent of WITHOUT OVERLAPS
Functlonallty available using EXCLUDE constraints

ADout @NVarkusVVinanao

Tuning developers for
high SQL performance

SQL
PERFORMANCE

Training & tuning:
http://winand.at/

Author of:
http://sal-performance-explained.com/

Geeky blog:
http://use-the-index-luke.com

