
Monitor More on PostgreSQLMonitor More on PostgreSQL
Introduction of New Features of pg_statsinfo

Kyotaro Horiguchi
Open source software center, NTT

Copyright©2015 NTT corp. All Rights Reserved.

Table of Contents

1. What is pg_statsinfo?
2. How Does It Works?
3. Similar Works
4. New Features
5. pg_store_plans
6. Installation
7. Demos

2Copyright©2015 NTT corp. All Rights Reserved.

Wh i i f ?Wh i i f ?What is pg_statsinfo?What is pg_statsinfo?

3Copyright©2015 NTT corp. All Rights Reserved.

1.1. Motivation

Many valuable clues will have disappearedMany valuable clues will have disappeared
before found to be usable.

• sar / *stat / sosreport give valuable information about the
environment on which PostgreSQL runs but,

• They offer nothing about PostgreSQL internals. We
sometimes find clues for the cause of trouble from serversometimes find clues for the cause of trouble from server
logs and every server status at the time of reporting.

• If the contents of the system catalogs or variousIf the contents of the system catalogs or various
statistics were recored, we could even find signs of
trouble before it occurs.

4Copyright©2015 NTT corp. All Rights Reserved.

1. 2. What is pg_statsinfo?

Monitoring tool for PostgreSQL which have
b d l d bbeen developed by NTT OSS Center over years.

http://sourceforge.net/projects/pgstatsinfo

•collects various information from
system catalogs/viewssystem catalogs/views
server logs
/proc file system/proc file system

auxiliary extensions (pg_stat_statements, pg_store_plans).

•easy to install

•has a rich viewer
5Copyright©2015 NTT corp. All Rights Reserved.

•has a rich viewer

How does it work?How does it work?

6Copyright©2015 NTT corp. All Rights Reserved.

2. How does it work?

•pg_statsinfo consists of three major parts.

• pg_statsinfod, an agent program runs aside
Postgresql on the target to probe it and sends the g q g p
result periodically to repository database.

• repository database which stores what the probe• repository database, which stores what the probe
collected in the form of a time series of snapshots.

pg stats reporter a graphical ie er hich• pg_stats_reporter, a graphical viewer which
allows users to examine the repository in intuitive
wayway.

7Copyright©2015 NTT corp. All Rights Reserved.

2.1. Example configuration

Repository DBWeb ServerWeb Browser

pg stats reporterpg_stats_reporter

statsinfo
agent

statsinfo
agent

statsinfo
agent

stastinfo
agent

stastinfo
agent

8Copyright©2015 NTT corp. All Rights Reserved.

Target server(instance)s

2.2. pg_statsinfo in detail

runs aside the target server a probe processruns aside the target server a probe process
(agent) which observes system catalogs and
views, and server logs, then creates snapshots.

sends created snapshots to
repository server.p y

pg_statsinfo
agent

T t R it DB

9Copyright©2015 NTT corp. All Rights Reserved.

Target serverRepository DB

2.3. pg_stats_reporter in detail

asks repository for snapshotsasks repository for snapshots
in requested report period.

returns generated graphical report
to browser It is rich and interactiveto browser. It is rich and interactive
thanks to jQuery-UI and its plugins.

pg_stats_reporter

Repository DBWeb ServerWeb Browser

10Copyright©2015 NTT corp. All Rights Reserved.

p yWeb Server

Similar ProductsSimilar Products

11Copyright©2015 NTT corp. All Rights Reserved.

3. Similar products (1/3)

pgFouine and pgBadger offer the similar
f ti lit t t t i f b t l diff t ifunctionality to pg_statsinfo but also different in
some points.

The advantages of pg_statsinfo are,

• Additional information available from system
catalogs/views, some extensions, and /proc.

• Statement logs are not required so server logs does
not bloat.

pgFouine: http://pgfouine.projects.pgfoundry.org/
pgBadger: http://dalibo.github.io/pgbadger/

12Copyright©2015 NTT corp. All Rights Reserved.

3. Similar products (2/3)

The disadvantages are,

• Required to install into every target server, including
additional extensions.
pg_stat_statements and pg_store_plans are necessary to make it
fully functional.

• Some extent of performance reduction is inevitableSome extent of performance reduction is inevitable.
DBT-2 benchmark slowed by less than 1% in TPS, but workloads
where the most queries are vary short would be more affected.

13Copyright©2015 NTT corp. All Rights Reserved.

3. Similar products (3/3)

Postgres Toolkit

• A multitool to help DBAs to manage PostgreSQL
i t f d f ll t lservers, consists of a dozen of small tools.

• One of them, pt-stat-snapshot, is a tool which leaves
snapshots of some performance views of PostgreSQLsnapshots of some performance views of PostgreSQL.

http://postgres-toolkit launchrock com/http://postgres-toolkit.launchrock.com/

14Copyright©2015 NTT corp. All Rights Reserved.

New FeaturesNew Features

15Copyright©2015 NTT corp. All Rights Reserved.

4.1. New features - as of version 3.0

The previous version of pg_statsinfo 3.0 and
pg_stats_reporter 3.0 had the following new
f tfeatures.

S l i i• Stores server logs in repository
• Records autovacuum/analyze statistics
R d l i i• Records alerts in repository

• Stop to support PostgreSQL 8.3

16Copyright©2015 NTT corp. All Rights Reserved.

4.1.1. New features –The Log Viewer

Shows log lines for the given report period and offers on-
screen quick filter and instant sorting features.sc ee qu c te a d sta t so t g eatu es.

k f l d

Selectable columns

Quick filter and sorting

17Copyright©2015 NTT corp. All Rights Reserved.

4.1.2. New features –autovacuum stats

Statistics of autovacuum and analyze are usefulStatistics of autovacuum and analyze are useful
to check the health of the server or to find
signes of trouble.

Database Schema Table Count
Avg

index
Avg

removed
Avg

remain Avg remain
d d

Avg
duration

Max
duration Cancels

Autovacuum Overview

s g es o t oub e.

Database Schema Table Count index
scans

removed
rows

remain
rows dead duration

(sec)
duration

(sec)
Cancels

dbt2 public district 59 0.119 99.356 121.8 20.373 0.027 0.74 2
dbt2 pg_ca.. pg_st.. 1 1 61 491 0 0.06 0.06 0
dbt2 pg_to.. pg_to.. 5 1 56.4 81 4.4 1.03 4.79 0

Total Avg Max Max
Analyze Overview

dbt2 public wareh.. 36 0.028 56.167 21.389 10.528 0.005 0.13 0

Database Schema Table Count duration
(sec)

duration
(sec)

duration
(sec)

Last analyzed Cancels modified
rows

dbt2 public wareh.. 60 2.17 0.036 0.052015/3/10 17:12 0 69
dbt2 public district 60 1.18 0.02 0.132015/3/10 17:12 2 246
dbt2 public new 1 0 66 0 66 0 662015/3/10 16:51 0 8963

18Copyright©2015 NTT corp. All Rights Reserved.

dbt2 public new_.. 1 0.66 0.66 0.662015/3/10 16:51 0 8963

4.2. New features – latest version

The latest version of pg statsinfo andThe latest version of pg_statsinfo and
pg_stats_reporter to have the following new features.

• Execution plan statistics
• AUTOANALYZE cancellations statistics
• Some numbers available in PostgreSQL9.4.

• Number of tuples remain dead after AUTOVACUUM
• Number of tuples modified since last ANALYZE• Number of tuples modified since last ANALYZE
• WAL archive statistics

• Peak rate of disk reads/writes
• Documentation and helps are extensively revised.

19Copyright©2015 NTT corp. All Rights Reserved.

4.2.1. New features - Plan Statistics
Plan statistics lists plans executed for a query along
with the similar numbers with query statistics. This is q y
useful to trace the transition of plans for a query.

Query ID User Database Plan count Calls Total time Time/call Block rd time Blockwr timeQuery ID User Database Plan count Calls Total time Time/call Block rd time Blockwr timeQuery ID User Database Plan count Calls Total time Time/call Block rd time Blockwr timeQuery ID User Database Plan count Calls Total time Time/call Block rd time Blockwr timeQuery ID User Database Plan count Calls Total time Time/call Block rd time Blockwr timeQ y
79661 horiguti postgres 3 285998 2044.929 0.007 0 0

UPDATE pgbench_branches SET bbalance = bbalance + ? WHERE bid = ?;

Plan ID
Calls Total time Time/call Block r time Block w time First call Last call

Plan (child row)

2361498583 164673 1236 273 0 008 0 0 2015/6/9 18:01 2015/6/9 18:09

Q y
79661 horiguti postgres 3 285998 2044.929 0.007 0 0

UPDATE pgbench_branches SET bbalance = bbalance + ? WHERE bid = ?;

Plan ID
Calls Total time Time/call Block r time Block w time First call Last call

Plan (child row)

2361498583 164673 1236 273 0 008 0 0 2015/6/9 18:01 2015/6/9 18:09

Q y
79661 horiguti postgres 3 285998 2044.929 0.007 0 0

UPDATE pgbench_branches SET bbalance = bbalance + ? WHERE bid = ?;

Plan ID
Calls Total time Time/call Block r time Block w time First call Last call

Plan (child row)

2361498583 164673 1236 273 0 008 0 0 2015/6/9 18:01 2015/6/9 18:09

Q y
79661 horiguti postgres 3 285998 2044.929 0.007 0 0

UPDATE pgbench_branches SET bbalance = bbalance + ? WHERE bid = ?;

Plan ID
Calls Total time Time/call Block r time Block w time First call Last call

Plan (child row)

2361498583 164673 1236 273 0 008 0 0 2015/6/9 18:01 2015/6/9 18:09

Q y
79661 horiguti postgres 3 285998 2044.929 0.007 0 0

UPDATE pgbench_branches SET bbalance = bbalance + ? WHERE bid = ?;

Plan ID
Calls Total time Time/call Block r time Block w time First call Last call

Plan (child row)

2361498583 164673 1236 273 0 008 0 0 2015/6/9 18:01 2015/6/9 18:092361498583 164673 1236.273 0.008 0 0 2015/6/9 18:01 2015/6/9 18:09

Update on pgbench_branches (cost=4.14..8.16 rows=1 width=370)
-> Bitmap Heap Scan on pgbench_branches (cost=4.14..8.16 rows=1 width=370)

Recheck Cond: (bid = 2)
-> Bitmap Index Scan using pgbench branches pkey (cost=0.00..4.14 rows=1 width=0)

2361498583 164673 1236.273 0.008 0 0 2015/6/9 18:01 2015/6/9 18:09

Update on pgbench_branches (cost=4.14..8.16 rows=1 width=370)
-> Bitmap Heap Scan on pgbench_branches (cost=4.14..8.16 rows=1 width=370)

Recheck Cond: (bid = 2)
-> Bitmap Index Scan using pgbench branches pkey (cost=0.00..4.14 rows=1 width=0)

2361498583 164673 1236.273 0.008 0 0 2015/6/9 18:01 2015/6/9 18:09

Update on pgbench_branches (cost=4.14..8.16 rows=1 width=370)
-> Bitmap Heap Scan on pgbench_branches (cost=4.14..8.16 rows=1 width=370)

Recheck Cond: (bid = 2)
-> Bitmap Index Scan using pgbench branches pkey (cost=0.00..4.14 rows=1 width=0)

2361498583 164673 1236.273 0.008 0 0 2015/6/9 18:01 2015/6/9 18:09

Update on pgbench_branches (cost=4.14..8.16 rows=1 width=370)
-> Bitmap Heap Scan on pgbench_branches (cost=4.14..8.16 rows=1 width=370)

Recheck Cond: (bid = 2)
-> Bitmap Index Scan using pgbench branches pkey (cost=0.00..4.14 rows=1 width=0)

2361498583 164673 1236.273 0.008 0 0 2015/6/9 18:01 2015/6/9 18:09

Update on pgbench_branches (cost=4.14..8.16 rows=1 width=370)
-> Bitmap Heap Scan on pgbench_branches (cost=4.14..8.16 rows=1 width=370)

Recheck Cond: (bid = 2)
-> Bitmap Index Scan using pgbench branches pkey (cost=0.00..4.14 rows=1 width=0)p g pg _ _p y ()

Index Cond: (bid = 2)
273038856 69201 492.439 0.007 0 0 2015/6/9 18:05 2015/6/9 18:09

Update on pgbench_branches (cost=0.13..8.15 rows=1 width=370)
-> Index Scan using pgbench_branches_pkey on pgbench_branches (cost=0.13..8.15 rows=1

width=370)

p g pg _ _p y ()
Index Cond: (bid = 2)

273038856 69201 492.439 0.007 0 0 2015/6/9 18:05 2015/6/9 18:09

Update on pgbench_branches (cost=0.13..8.15 rows=1 width=370)
-> Index Scan using pgbench_branches_pkey on pgbench_branches (cost=0.13..8.15 rows=1

width=370)

p g pg _ _p y ()
Index Cond: (bid = 2)

273038856 69201 492.439 0.007 0 0 2015/6/9 18:05 2015/6/9 18:09

Update on pgbench_branches (cost=0.13..8.15 rows=1 width=370)
-> Index Scan using pgbench_branches_pkey on pgbench_branches (cost=0.13..8.15 rows=1

width=370)

p g pg _ _p y ()
Index Cond: (bid = 2)

273038856 69201 492.439 0.007 0 0 2015/6/9 18:05 2015/6/9 18:09

Update on pgbench_branches (cost=0.13..8.15 rows=1 width=370)
-> Index Scan using pgbench_branches_pkey on pgbench_branches (cost=0.13..8.15 rows=1

width=370)

p g pg _ _p y ()
Index Cond: (bid = 2)

273038856 69201 492.439 0.007 0 0 2015/6/9 18:05 2015/6/9 18:09

Update on pgbench_branches (cost=0.13..8.15 rows=1 width=370)
-> Index Scan using pgbench_branches_pkey on pgbench_branches (cost=0.13..8.15 rows=1

width=370)width=370)
Index Cond: (bid = 2)

4132319976 52124 316.217 0.006 0 0 2015/6/9 17:59 2015/6/9 18:01

Update on pgbench_branches (cost=0.00..8.09 rows=1 width=370)
-> Seq Scan on pgbench_branches (cost=0.00..8.09 rows=1 width=370)

width=370)
Index Cond: (bid = 2)

4132319976 52124 316.217 0.006 0 0 2015/6/9 17:59 2015/6/9 18:01

Update on pgbench_branches (cost=0.00..8.09 rows=1 width=370)
-> Seq Scan on pgbench_branches (cost=0.00..8.09 rows=1 width=370)

width=370)
Index Cond: (bid = 2)

4132319976 52124 316.217 0.006 0 0 2015/6/9 17:59 2015/6/9 18:01

Update on pgbench_branches (cost=0.00..8.09 rows=1 width=370)
-> Seq Scan on pgbench_branches (cost=0.00..8.09 rows=1 width=370)

width=370)
Index Cond: (bid = 2)

4132319976 52124 316.217 0.006 0 0 2015/6/9 17:59 2015/6/9 18:01

Update on pgbench_branches (cost=0.00..8.09 rows=1 width=370)
-> Seq Scan on pgbench_branches (cost=0.00..8.09 rows=1 width=370)

width=370)
Index Cond: (bid = 2)

4132319976 52124 316.217 0.006 0 0 2015/6/9 17:59 2015/6/9 18:01

Update on pgbench_branches (cost=0.00..8.09 rows=1 width=370)
-> Seq Scan on pgbench_branches (cost=0.00..8.09 rows=1 width=370)

20Copyright©2015 NTT corp. All Rights Reserved.

Filter: (bid = 4)Filter: (bid = 4)Filter: (bid = 4)Filter: (bid = 4)Filter: (bid = 4)

4.5. New features – I/O Peak Graph
The I/O peak graph
shows the maximum
number among the
averages for every
sampling interval (5 p g (
seconds by default),
during each snapshot
interval This describesinterval. This describes
more precise situation
where sudden increase
in I/O usage took placein I/O usage took place.

21Copyright©2015 NTT corp. All Rights Reserved.

pg store planspg store planspg_store_planspg_store_plans

22Copyright©2015 NTT corp. All Rights Reserved.

5. What is pg_store_plans?

http://osdn.jp/projects/pgstoreplans/

• Collects stats of execution plans in similar way to
t t t t tpg_stat_statements.

• Developed based on pg_stat_statements for the
f idi i f i h h lpurpose of providing pg_statsinfo with the plan

stats feature.

l l b h• Almost same to pg_stat_plans, but the most
significant difference with pg_stat_plans is that
pg store plans holds explain representation forpg_store_plans holds explain representation for
later use.

23Copyright©2015 NTT corp. All Rights Reserved.

5.1. Why pg_store_plans

• Explain representations are required to be held for
later use in repository database.

• To reduce required storage, execution plans are
t d i th f f “ h t d JSON” hi hstored in the form of “shortened JSON”, which

effectively reduces snapshot size, too.

{"p":{"t":"b","!":"u","n":"snapshot","a":"snapshot","1":27.63,"2":35.65,"
3":1,"4":33,"l":[{"t":"z","g":"p","h":"I","q":"InitPlan 2 (returns $1)",
"1":27 34 "2":27 35 "3":1 "4":4 "l":[{"t":"h" "h":"I“ "q":"InitPlan 11 :27.34, 2 :27.35, 3 :1, 4 :4, l :[{ t : h , h : I , q : InitPlan 1
(returns $0)","n":"pg_namespace","a":"pg_namespace","1":0.00,
"2":1.10,"3":1,"4":4,"5":"(nspname = 'statsrepo'::name)"},{"t":"h",
"h":"o","n":"pg_class","a":"pg_class","1":0.00,"2":25.79,"3":90,"4":4,
"5":"(relnamespace = $0)"}]},{"t":"i","h":"m","d":"f",
"i":"snapshot_pkey","n":"snapshot","a":"snapshot","1":0.28,"2":8.30,
"3":1,"4":33,"8":"(snapid = 3165::bigint)"}]}}

24Copyright©2015 NTT corp. All Rights Reserved.

An Example of Internal Format for Plan Strings

5.2. pg_store_plans in detail
Most of the columns of pg_store_plans are the same to
pg_stat_statements. The following is the list of columns

queryid

peculiar to pg_store_plans.

queryid
- hash of the query calculated by pg_store_plans

planid
hash of the plan- hash of the plan

queryid_stat_statements
- query ID calculated by pg_stat_statements, if any

plan
- plan representation

first callfirst_call
- time when the plan executed first

last_call

25Copyright©2015 NTT corp. All Rights Reserved.

- time when the plan is most recently executed

InstallationInstallation

26Copyright©2015 NTT corp. All Rights Reserved. 29

6.1. Minimul installation of pg_statsinfo
For the minimal setup, pg_statsinfo needs only two
lines to be added to postgresql.conf after installing p g q g
binaries. pg_statsinfo uses the target server itself as
repository.

shared_preload_libraries = ‘pg_statsinfo’

Repository DB

27Copyright©2015 NTT corp. All Rights Reserved.

Target server

6.2. Typical installation of pg_statsinfo

As the more realistic setup, placing repository on
dedicated server collecting additional information anddedicated server, collecting additional information and
login in as non-superuser, the additional setup looks like
this on the target.

pg_statsinfo.repository_server = ‘hostname=si_repos dbname=repos user=repos’
shared_preload_libraries = 'pg_statsinfo, pg_stat_statements, pg_store_plans‘
log_checkpoints = yes
log autovacuum min duration = 0og_auto acuu _ _du at o 0
track_io_timing = yes
track_functions = all
track_activities = yes

28Copyright©2015 NTT corp. All Rights Reserved.

Repository DB@si_repos Target server

6.3. Installation of pg_stats_reporter

pg_stats_reporter runs as a PHP script on httpd. Some
php-related packages are needed to be installed.php related packages are needed to be installed.

yum install httpd php php-pgsql php-intl php-cli
rpm –ivh pg stats reporter-3.1.0-el7.noarch.rpmp pg_ _ p p

Firewall and SELinux needs additional setup.
firewall-cmd –-zone=public –-add-service=http# p p
setsebool -P httpd_can_network_connect_db 1
semanage fcontext -a -t httpd_sys_rw_content_t /var/www/pg_stats_reporter_lib/cache
semanage fcontext -a -t httpd_sys_rw_content_t /var/www/pg_stats_reporter_lib/compiled
restorecon -v /var/www/pg_stats_reporter_lib/cache
restorecon -v /var/www/pg stats reporter lib/compiled# restorecon v /var/www/pg_stats_reporter_lib/compiled

29Copyright©2015 NTT corp. All Rights Reserved.

30Copyright©2015 NTT corp. All Rights Reserved.

7. Demonstration

Since it is quite boring to demonstrate placingSince it is quite boring to demonstrate placing
binaries and SELinux setup, so they are skipped in this
demo.

Installing binaries of php, httpd, PostgreSQL,
pg_stat_statements, pg_store_plans,
pg_statsinfo/pg_stats_reporter
firewall-cmd –zone=public –-add-service=http
setsebool -P httpd_can_network_connect_db 1
semanage fcontext -a -t httpd_sys_rw_content_t /var/www/pg_stats_reporter_lib/cache
semanage fcontext -a -t httpd sys rw content t /var/www/pg stats reporter lib/compiledse a age co te t a t ttpd_sys_ _co te t_t / a / /pg_stats_ epo te _ b/co p ed
restorecon -v /var/www/pg_stats_reporter_lib/cache
restorecon -v /var/www/pg_stats_reporter_lib/compiled

31Copyright©2015 NTT corp. All Rights Reserved.

7.1 Demo 1 Quick Run
This demo shows the minimal setup to run.
Access to http://localhost/pg_stats_reporter/pg_stats_reporter.php
after the steps following then you will see the online report

1. initialize the cluster
initdb

2. add the following to $PGDATA/postgresql.conf

after the steps following, then you will see the online report.

2. add the following to $PGDATA/postgresql.conf
shared_preload_libraries = 'pg_statsinfo, pg_store_plans, pg_stat_statements'

pg_statsinfo.sampling_interval = 1s
pg_statsinfo.snapshot_interval = 3s

log_line_prefix='%m [%p] '
log checkpoints = yeslog_checkpoints = yes
log_autovacuum_min_duration = 0
track_io_timing = yes
track_functions = all
track_activities = yes

3. start the server and register the additional extensios.
tl t tpg_ctl start -w

psql postgres -c 'create extension pg_store_plans'
psql postgres -c 'create extension pg_stat_statements‘

4. run a benchmark
pgbench -i postgres
pgbench -c 10 -T 30 postgrespg p g
- Then, stop pg_statsinfo
pg_statsinfo --stop -d postgres

5. pg_stats_reporter shows data in the time resolution of 1 minutes,
so tweak the timestamps of the snapshots to fit the limitaion.

psql postgres -c 'update statsrepo.snapshot set time = now() - ((select max(snapid) from

32Copyright©2015 NTT corp. All Rights Reserved.

psql postgres c update statsrepo.snapshot set time now() ((select max(snapid) from
statsrepo.snapshot) * 60)::text::interval + (snapid * 60)::text::interval;'

7.2. Creating offline report

Offline report consists of a collection of html and
l t d fil Th f ll i t ill irelated files. The following steps will give you an

offline report

Creating offline report for the whole period where snapshots populate.
pg_stats_reporter –O myreport

33Copyright©2015 NTT corp. All Rights Reserved.

Thank you

Thank you for your kind attention.

ご静聴ありがとうございましたご静聴ありがとうございました

34Copyright©2015 NTT corp. All Rights Reserved.

