
KUMAR RAJEEV RASTOGI
PRASANNA VENKATESH
TAO YE

(rajeevrastogi@huawei.com)

(prasanna.venkatesh@huawei.com)

(yetao1@huawei.com)

Go Faster With Native Compilation
PGCon 2015

18th June 2015

mailto:rajeevrastogi@huawei.com
mailto:prasanna.venkatesh@huawei.com
mailto:yetao1@huawei.com

 KUMAR RAJEEV RASTOGI

 Senior Technical Leader at Huawei Technology for almost 7 years

 Have worked to develop various features on PostgreSQL (for internal

 projects) as well as on other In-House DB.

 Active PostgreSQL community members, have contributed many patches.

 Holds around 12 patents in my name in various DB technologies.

 I have presented two papers in India PGDay (2014 and 2015).

 Prior to this, worked at Aricent Technology for 3 years.

 Blog - rajeevrastogi.blogspot.in

 LinkedIn - http://in.linkedin.com/in/kumarrajeevrastogi

Who Am I?

http://rajeevrastogi.blogspot.in/
http://rajeevrastogi.blogspot.in/
http://rajeevrastogi.blogspot.in/
http://rajeevrastogi.blogspot.in/
http://rajeevrastogi.blogspot.in/
https://www.linkedin.com/in/kumarrajeevrastogi
https://www.linkedin.com/in/kumarrajeevrastogi
https://www.linkedin.com/in/kumarrajeevrastogi
https://www.linkedin.com/in/kumarrajeevrastogi
https://www.linkedin.com/in/kumarrajeevrastogi
https://www.linkedin.com/in/kumarrajeevrastogi
https://www.linkedin.com/in/kumarrajeevrastogi

Native Compilation 3

5

Current Business Trend 2

What to Compile

Cost model 4

Schema binding 6

7 Schema binding Solution

Performance Scenario 8

1 Background

9 Conclusion

Agenda

The traditional database executors are based on the fact that “I/O cost dominates

execution”. These executor models are inefficient in terms of CPU instructions.

Now most of the workloads fits into main memory, which is consequence of two

broad trends :

1. Growth in the amount of memory (RAM) per node/machine

2. Prevalence of high speed SSD

Background

So now biggest bottleneck is CPU usage efficiency not I/O. Our problem

statement is to make our database more efficient in terms of CPU instructions –

there by leveraging the larger memory

So
u

rce: IC
D

E C
o

n
feren

ce

Slowly database industries are reaching to a point where increase of

throughput has become very limited. Quoting from a paper on Hekaton -

The only real hope to increase throughput is to reduce the number of instructions

executed but the reduction needs to be dramatic. To go 10X faster, the engine must

execute 90% fewer instructions and yet still get the work done. To go 100X faster, it

must execute 99% fewer instructions.

 Such a drastic reduction in instruction without

disturbing whole functionality is only possible by code specialization (a.k.a

Native Compilation or famously as LLVM) i.e. to generate code specific to

object/query.

Current Business Trend

Many DBs are moving into compilation technology to improve

performance by reducing the CPU instruction some of them are:

 Hekaton (SQL Server 2014)

 Oracle

 MemSQL

Current Business Trend Contd…

Hekaton: Comparison of CPU efficiency for lookups
Source: Hekaton Paper

Native Compilation is a methodology to reduce CPU instructions by executing only

instruction specific to given query/objects unlike interpreted execution. Steps are:

1. Generate C-code specific to objects/query.

2. Compile C-code to generate DLL and load with server executable.

3. Call specialized function instead of generalized function.

Native Compilation

 e.g. Expression: Col1 + 100
Traditional executor will requires 100’s of instruction to find all
combination of expression before final execution, whereas in vanilla c
code, it can directly execute in 2-3 instructions.

So
u

rce: IC
D

E C
o

n
feren

ce

Cost model of specialized code can be expressed as:

 cost of execution = generate specialized code

 + compilation

 + execute compiled code

Execution of compiled code is very efficient but generation of
specialized code and compiling same may be bit expensive affair. So in
order to drive down this cost:

1. Generate and compile the code once and use it many times; this
distributes the constant cost.

2. Improve the performance of generation and compilation
significantly.

Cost model

Any CPU intensive entity of database can be natively compiled, if they have

similar pattern on different execution. Some of the most popular one are:

 Schema (Relation)

 Procedure

 Query

 Algebraic expression

Note: We will target only Schema for this presentation.

What to Native Compile?

Property of each relation:

1. Number of attributes, their length and data-type are fixed.

2. Irrespective of any data, it is going to be stored in similar pattern.

3. Each attributes are accessed in similar pattern.

Disadvantage of current approach for each tuple access:

1. Loops for each attribute.

2. Property of all attributes are checked to take many decisions.

3. Executes many unwanted instructions.

Schema binding

So we can overcome the disadvantage by natively compiling the relation

based on its property to generate specialized code for each functions of

schema.

Schema Binding = Native Compilation of Relation

Benefit:

1. Each attribute access gets flattened.

2. All attribute property decision are taken during code generation.

3. No decision making at run-time.

4. Reduced CPU instruction.

Schema binding Contd…

Schema binding Contd…

CREATE

TABLE

Automatic

Code

generation

C DLL

Load All function

SQL QUERY

Compiled

Functions

Once a create table command

is issued, a C-file with all

specialized access function is

generated, which is in turns

gets loaded as DLL. These

loaded functions are used by

all SQL query accessing the

compiled table

Schema binding Contd…

This show overall

interaction with

schema bound. Any

query issued from

client can use

schema bound

function or normal

function depending

on the underlying

table.

Schema:

 create table tbl (id1 int, id2 float,

 id3 varchar(10), id4 bool);

Schema binding: Example

Field id1 and id2 is

going to be always

stored at same offset

and with same

alignment, no

change at run time.

Only variable length

attribute and

attribute following

this will have

variable offset.

Using current approach:

Access Using specialized code:

 method-1:

 method-2:

Conclusion: Specialized code uses fewer number of instruction compare to generalized code
 and hence better performance.

Schema binding: Example

Each Line here

is macro, which

invokes

multiple

condition check

to decide the

action

if (thisatt->attlen != -1)

{

 offset = att_align_nominal(off, thisatt->attalign)

 values[1] = fetchatt(thisatt, tp + offset)

 offset = att_addlength_pointer(off, thisatt->attlen,

 tp + off);

}

values[1] = ((struct tbl_xxx*)tp)->id2;

offset = DOUBLEALIGN(offset);

values[1] = *((Datum *)(tp + offset));

offset += 8;

See details

about this in

further slides.

Solution can be categorized as:

1 Opting for schema bind.

2 Functions to be customized.

3 Customized function generation.

4 Loading of customized function.

5 Invocation of customized function.

6 How to generate dynamic library.

Schema Binding Solution

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } |

UNLOGGED] TABLE [IF NOT EXISTS] table …[TABLESPACE

tablespace_name] [SCHEMA_BOUNDED]

 SCHEMA_BOUND is new option with

CREATE TABLE to opt for code specialization.

Solution: Opting for schema bind tuple

Function Name (xxx relname_relid) Purpose

heap_compute_data_size_xxx To calculate size of the data part of the tuple

Heap_fill_tuple_xxx To fill the tuple with the data

Heap_deform_tuple_xxx Deform the heap tuple

Slot_deform_tuple_xxx
To deform the tuple at the end of scan to project

attribute

Nocachegetattr_xxx
To get one attribute value from the tuple for

vacuum case

Solution: Functions to be customized

Customized function for tuple access of a table can be categorized in 3

approaches:

Method-1 With Tuple format change

Method-2 Without changing the tuple format.

Method-3 Re-organize table columns internally to make all

 fixed length and variable length attribute in

 sequence.

Solution: Function Generation

A structure corresponding to relation will be created in such a way that
each attribute’s value/offset can be directly referenced by typecasting the
data buffer with structure.

e.g. Consider our earlier example table:

Solution: Function Generation-Method-1

Structure member variable

id1, id2 and id4 contains actual

value of column, whereas

id3_offset stores the offset of

the column id3, as during

create table it is not known the

size of the actual value going

to be stored. End of this

structure buffer will hold data

for variable size column and it

can be accessed based on the

corresponding offset stored.

typedef struct schemaBindTbl_xxx

{

 int id1;

 float id2;

 short id3_offset;

 bool id4;

 /* Actual data for variable size

 column*/

} SchemaBindTbl_xxxx;

create table tbl (id1 int, id2 float, id3 varchar(10), id4 bool);

Solution: Function Generation-Method-1 Contd…

Existing Tuple Format

New Tuple Format

All attribute
values stored in
sequence.

Value of fixed
length attribute
but offset of
variable length
attribute stored in
sequence. So
structure typecast
will give either
value or offset of
value.

So using this structure, tuple data can be stored as:

 Fixed size data-type storage:

 Variable size data-type storage:

 Using this approach heap_fill_tuple function can be generated during create
table.

Solution: Function Generation-Method-1 Contd…

((SchemaBindTbl_xxxx*)data)->id1 = DatumGetXXX(values[attno]);

((SchemaBindTbl_xxxx*)data)->id3_offset = data_offset;

data_length = SIZE((char*)values[attno]);

SET_VARSIZE_SHORT(data + data_offset, data_length);

memcpy(data + data_offset + 1, VARDATA((char*)values[attno]), data_length -1);

data_offset += data_length;

Similarly, each attribute value from tuple can be accessed as:

 Fixed size data-type access:

 Variable size data-type access:

 Using this approach all function related to deformation of tuple (i.e.

heap_deform_tuple, slot_deform_tuple and nocachegettr) can be generated

during create table.

Solution: Function Generation-Method-1 Contd…

values[attno] = ((SchemaBindTbl_xxxx*)data)->id1;

data_offset = ((SchemaBindTbl_xxxx*)data)->id3_offset ;
values[attno] = PointerGetDatum((char *) ((char*)tp + data_offset));

Advantage:

1. No dependency on previous attributes.

2. Any of the attribute value can be accessed directly.

3. Access of attribute value is very efficient as it will take very few

instructions.

Disadvantage:

1. Size of the tuple will increase leading to more memory consumption.

Solution: Function Generation-Method-1 Contd…

This method generates the customized functions without changing the

format of the tuple.

This approach uses slight variation of existing macros:

 fetch_att

 att_addlength_pointer

 att_align_nominal

 att_align_pointer

These macros takes many decision based on the data-type, its size of each

attributes which is going to be same for a relation.

 So instead of using these macro for each tuple of a relation at run-

time, it is used once during table schema definition itself to generate all

customized function.

Solution: Function Generation-Method-2

So as per this mechanism, code for accessing float attribute will be as below:

 Similarly access for all other data-type attributes can also

be generated.

 Using the combination of other macro, customized code

for all other functions used for tuple access can be generated.

Solution: Function Generation-Method-2 Contd…

offset = DOUBLEALIGN(offset); Skipped alignment check

values[1] = *((Datum *)(tp + offset)); Skipped datum size check

offset += 8; Skipped attribute length check

Advantage:

1. Existing tested macro are used, so it is very safe.

2. No change in tuple format and size.

3. Reduces number of overall instruction by huge margin.

Disadvantage:

1. Dependency on previous attribute incase previous attribute is variable

length.

Solution: Function Generation-Method-2 Contd…

This method is intended to use advantages of previous methods i.e.

 Make least number of attribute dependency

 All fixed length attributes are grouped together to make initial list of

columns followed by all variable length columns. So all fixed length

attributes can be accessed directly. Change in column order will be

done during creation of table itself.

 No change in tuple size, so access of tuple will be very efficient

 In order to achieve this, we use Method-2 to generate specialized

code.

Solution: Function Generation-Method-3

E.g. Consider our earlier example:

 create table tbl (id1 int, id2 float, id3 varchar(10), id4

bool);

Solution: Function Generation-Method-3 Contd…

So in this case, while

creating the table id1,

id2 and id4 will be

first 3 columns

followed by id3.

So access code can be generated directly during schema definition

without dependency on any run time parameter because all of the

attribute offset is fixed except of variable length attributes.

 If there are more variable length attributes then they

will be stored after id3 and for them it will have to know the length of

the previous columns to find the exact offset.

Advantage:

1. Existing tested macro are used, so it is very safe.

2. No change in tuple format and size.

3. Reduces number of overall instruction by huge margin.

Disadvantage:

1. There will be still dependency among multiple variable length

attributes (if any).

Solution: Function Generation-Method-3 Contd…

Once we generate the code

corresponding to each access

function, the same gets written into

a C-file, which in turn gets

compiled to dynamic linked library

and then this dynamic library gets

loaded with server executable. So

now any function of the library can

be invoked directly from the server

executables.

Solution: Loading of customized functions

The generated C-file should be compiled to generate dynamic library,

which can be done using:

1. LLVM

 Compilation using the LLVM will be very fast.

2. GCC

 GCC is standard way of compiling C file but it will be slow

compare to LLVM.

Solution: How to generate dynamic library

While forming the tuple,

corresponding relation option

schema_bound will be checked to

decide whether to call customized

function corresponding to this

relation or the standard

generalized function. Also in tuple

flag t_infomask2,

HEAP_SCHEMA_BIND_TUPLE

(with value 0x1800) will be

appended to mark the schema

bounded tuple.

Solution: Invocation of Storage Customized Function

The tuple header’s t_infomask2

flag will be checked to see , if

HEAP_SCHEMA_BIND_TUPLE

is set to decide whether to call

customized function

corresponding to this relation or

the standard generalized function.

Solution: Invocation of access customized function

Performance (TPC-H):

The system configuration is as below:

SUSE Linux Enterprise Server 11 (x86_64), 2 Cores, 10 sockets per core

TPC-H Configuration: Default

Query-1, 2 and 17 not shown in charts to maintain clear

visibility of chart.

0 2000 4000 6000 8000 10000 12000

Query-3

Query-4

Query-5

Query-6

Query-7

Query-8

Query-9

Query-10

Query-11

Query-12

Query-13

Query-14

Query-15

Query-16

Query-18

Query-19

Time(ms)

TPC-H Performance

Original(ms) SchemaBind (ms)

TPC-H Query Improvement(%)

Query-1 2%

Query-2 36%

Query-3 14%

Query-4 13%

Query-5 2%

Query-6 21%

Query-7 16%

Query-8 5%

Query-9 6%

Query-10 9%

Query-11 3%

Query-12 17%

Query-13 3%

Query-14 20%

Query-15 20%

Query-16 4%

Query-17 25%

Query-18 9%

Query-19 24%

Performance (Hash Join):

0

200

400

600

800

1,000

1,200

slot_deform_tuple Overall

Instruction Reduction

SchemaBind Original

0

50

100

150

200

250

T

i

m

e(

m

s)

Latency Improvement

SchemaBind Original

Latency Improvement: 23%

Overall Instruction reduction: 30%

Access method instruction reduction: 89%

Outer Table: Having 10 columns, cardinality 1M

Inner Table: Having 2 columns, cardinality 1K

Query: select sum(tbl.id10) from tbl,tbl2 where tbl.id10=tbl2.id2 group by tbl.id9;

Schema binding mainly depend on the code specialization of access function

for table. Number of instruction reduced per call of slot_deform_function

is more than 70% and hence if this function form good percentage of total

instruction e.g. in

 Aggregate query,

 group

 Join

 Query with multiple attribute

All of above cases with huge table size, then overall instruction reduction

will be also huge and hence much better performance.

Performance Scenario:

Seeing the industry trend, we have implemented one way of code

specialization, which resulted in up to 30% of performance improvement

on standard benchmark TPC-H.

 This technology will make us align with

current business trend to tackle the CPU bottleneck and also could be one

of the hot technology for work on PostgreSQL.

Conclusion

I would like to thanks my colleague Guogen Zhang, Yonghua Ding and

Chen Zhu who supported during this work.

Acknowledgment

1. Zhang, Rui, Saumya Debray, and Richard T. Snodgrass. "Micro-specialization: dynamic

code specialization of database management systems." Proceedings of the Tenth

International Symposium on Code Generation and Optimization. ACM, 2012.

 http://dl.acm.org/citation.cfm?id=2259025

2. Freedman, Craig, Erik Ismert, and Per-Åke Larson. "Compilation in the Microsoft

SQL Server Hekaton Engine." IEEE Data Eng. Bull. 37.1 (2014): 22-30.

 http://www.internalrequests.org/showconfirmpage/?url=ftp://131.107.65.22/pub

/debull/A14mar/p22.pdf

Reference

http://dl.acm.org/citation.cfm?id=2259025
http://www.internalrequests.org/showconfirmpage/?url=ftp://131.107.65.22/pub/debull/A14mar/p22.pdf
http://www.internalrequests.org/showconfirmpage/?url=ftp://131.107.65.22/pub/debull/A14mar/p22.pdf

TAPE

DRAM

DISK

CACHE

DRAM

DISK

 “Disk is the new tape;
Memory is the new disk.”

-- Jim Gray

PostgreSQL on Big RAM

Source: ICDE Conference

