
Postgres on the wire
A look at the PostgreSQL wire protocol

Jan Urbański
j.urbanski@wulczer.org

Ducksboard

PGCon 2014, Ottawa, May 23

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 1 / 51

For those following at home

Getting the slides

$ wget http://wulczer.org/postgres-on-the-wire.pdf

Getting the source

$ https://github.com/wulczer/postgres-on-the-wire

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 2 / 51

1 Protocol basics
Frame format
Message flow

2 Sending queries
Simple protocol
Extended protocol

3 Other features
The COPY subprotocol
Less known FEBE features
Future development

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 4 / 51

Protocol basics Frame format

Outline

1 Protocol basics
Frame format
Message flow

2 Sending queries

3 Other features

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 5 / 51

Protocol basics Frame format

Protocol versions

I the 2.0 protocol got introduced in 6.4, around 1999
I protocol versioning got added in the previous release

I the 3.0 got introduced in 7.4, in 2003

I the server still supports protocol 1.0!
I 3.0 has some new features

I extended query protocol
I COPY improvements
I overall better frame structure

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 6 / 51

Protocol basics Frame format

Handling incoming connections

Connections are received by the postmaster process, which immediately
forks a new process to deal with them.

I any parsing issues won’t affect the postmaster

I authentication is done after a process is forked
I closing the connection results in terminating the backend

I but the backend needs to notice that first
I killing the client might not terminate the running query

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 7 / 51

Protocol basics Frame format

FEBE frame format

Virtually all messages start with an ASCII identifier, followed by length and
payload.

Regular packet

char tag int32 len payload

The exception is the startup packet, which starts with the length followed
by the protocol version.

Startup packet

int32 len int32 protocol payload

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 8 / 51

Protocol basics Frame format

Startup packet

Startup packet

int32 len int32 protocol str name \0 str value ... \0

I the very first bit of data received by the backend is parsed as the
startup packet

I starts with a 32 bit protocol version field

I in protocol 2.0 it had a fixed length, in 3.0 it’s variable length
I what follows is a list of key/value pairs denoting options

I some keys, like user, database or options are special
I the rest are generic GUC options

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 9 / 51

Protocol basics Frame format

Regular data packet

Regular packet

char tag int32 len payload

I starts with an ASCII identifier
I a 32 bit message length follows

I this means you can’t send a query that’s larger than 1 GB

I interpretation of the payload depends on the identifier

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 10 / 51

Protocol basics Message flow

Outline

1 Protocol basics
Frame format
Message flow

2 Sending queries

3 Other features

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 11 / 51

Protocol basics Message flow

Authentication

AuthenticationRequest

'R' int32 len int32 method optional other

I if a connection requires authentication, the backend will send a
AuthenticationRequest

I there are several authentication types that can be demanded
I plain-text or MD5 password
I it’s up to the server to require plain text or encrypted
I GSSAPI, SSPI

I if no auth is necessary, the server sends AuthenticationOK

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 12 / 51

Protocol basics Message flow

Encrypted password exchange

AuthenticationRequestMD5

'R' int32 len int32 method char[4] salt

The MD5 AuthenticationRequest message includes a 4 byte salt.

pwdhash = md5(password + username).hexdigest()

hash = ′md5′ + md5(pwdhash + salt).hexdigest()

I using a salt prevents replay attacks

I double-hashing allows the server to only store hashes

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 13 / 51

Protocol basics Message flow

Parameter status

ParameterStatus

'S' int32 len str name str value

I the server notifies clients about important parameters
I first batch of ParameterStatus messages is sent on startup

I some of them are informative, like server version
I others are critical for security, like client encoding
I others yet are important for the client, like DateStyle

I when any of those parameters gets set, the server notifies the client
on the next occasion

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 14 / 51

Protocol basics Message flow

Basic message flow

Client Server

startup packet

auth request | auth OK

(optional) PasswordMessage

ParameterStatus

ParameterStatus

ParameterStatus

BackendKeyData

ReadyForQuery

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 15 / 51

Protocol basics Message flow

Encryption

SSL negotiation

int32 len int32 sslcode

I the startup packet can use a dummy protocol version to ask for SSL
support

I the server responds with with status byte or an error message

I the client can reconnect or abort if the response is negative

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 16 / 51

Protocol basics Message flow

SSL message flow

Client Server

ssl negotiation packet

’S’ | ’N’ | error

SSL handshake

startup packet

auth request | auth OK

(optional) PasswordMessage

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 17 / 51

Protocol basics Message flow

Cancellation

Cancel request

int32 len int32 cancelcode int32 pid int32 secret

I the cancel key is transmitted by the server upon connection

I cancelling queries requires opening separate connection

I another dummy protocol version is sent to ask for cancellation
I the cancellation message includes the process ID and a 32 bit key

I theoretically open to replay attacks, but can be sent over SSL
I libpq does not, so most applications will transmit it in the open

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 18 / 51

Protocol basics Message flow

Handling errors

ErrorResponse

'E' int32 len char code str value \0 char code str value \0 ... \0

I the ErrorResponse message is sent for all kinds of errors
I both for authentication errors and client errors

I it is a list of key-value fields
I in 2.0 it was just a string, in 3.0 it has structure
I example error fields are: message, detail, hint and error position
I detailed down to the source file and line, great for fingerprinting

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 19 / 51

Protocol basics Message flow

Tools

I standard tools like tcpdump or tshark work
I Wireshark has built-in support for deparsing the protocol

I but only for protocol 3.0

I pgShark is a very nice tool that works with the Postgres protocol

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 20 / 51

Protocol basics Message flow

pgShark examples

generate a report from a pcap file

$ pgs-badger < dump.pcap

display live protocol info

$ pgs-debug --interface eth0

dump SQL from a 2.0 protocol connection on a nonstandard port

$ pgs-sql -2 --port 5433

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 21 / 51

Sending queries Simple protocol

Outline

1 Protocol basics

2 Sending queries
Simple protocol
Extended protocol

3 Other features

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 22 / 51

Sending queries Simple protocol

Binary vs text data

I every type has a text and binary representation
I depending on compile-time options, timestamps are either 64 bit

integers or floating point values
I this is why integer datetimes is sent in ParameterStatus

I the client can choose if they want text or binary data
I the exact format for each type doesn’t seem to be documented

anywhere
I but that’s what C code is for :)

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 23 / 51

Sending queries Simple protocol

Simple query protocol

I client sends an SQL command
I server replies with RowDescription detailing the structure

I each column has a name
I the type OID, length and modifier (like char(16))
I each column is marked as containing binary or text output

I after that a DataRow message is sent for every row

I finally, the server sends CommandComplete and ReadyForQuery

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 24 / 51

Sending queries Simple protocol

Simple query frames

Query

'Q' int32 len str query

RowDescription

'T' int32 len int16 numfields +

str col int32 tableoid int16 colno int32 typeoid int16 typelen int32 typmod int16 format

. . .

DataRow

'D' int32 len int16 numfields int32 fieldlen char[fieldlen] data ...

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 25 / 51

Sending queries Simple protocol

Simple query frames cont.

CommandComplete

'C' int32 len str tag

ReadyForQuery

'Z' int32 len 'I' or 'T' or 'E'

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 26 / 51

Sending queries Simple protocol

Detecting transaction status

I the ReadyForQuery message includes transaction status

I this is useful for things like psql’s prompt or, more importantly,
pgbouncer

I the transaction status only got included in protocol 3.0
I for 2.0 libpq does string comparison to try and track the status

fe-protocol2.c

By watching for messages (...), we can do a passable

job of tracking the xact status. BUT: this does not

work at all on 7.3 servers with AUTOCOMMIT OFF.

(Man, was that feature ever a mistake.) Caveat user.

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 27 / 51

Sending queries Simple protocol

Detecting transaction status

I the ReadyForQuery message includes transaction status

I this is useful for things like psql’s prompt or, more importantly,
pgbouncer

I the transaction status only got included in protocol 3.0
I for 2.0 libpq does string comparison to try and track the status

fe-protocol2.c

By watching for messages (...), we can do a passable

job of tracking the xact status. BUT: this does not

work at all on 7.3 servers with AUTOCOMMIT OFF.

(Man, was that feature ever a mistake.) Caveat user.

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 27 / 51

Sending queries Simple protocol

Simple query protocol cont.

I several commands can be sent in one query string
I the server sends one CommandComplete per query
I in case of errors it’s up to the client to figure out which one failed

I sending an empty string yields a special EmptyQueryResponse instead
of CommandComplete

I the simple protocol always returns text data, except for binary cursors

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 28 / 51

Sending queries Simple protocol

Simple query protocol flow

Client Server

Query

RowDescription

DataRow

DataRow

DataRow

CommandComplete

ReadyForQuery

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 29 / 51

Sending queries Extended protocol

Outline

1 Protocol basics

2 Sending queries
Simple protocol
Extended protocol

3 Other features

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 30 / 51

Sending queries Extended protocol

Extended query protocol

I query execution is split into separate steps

I each step is confirmed by a separately server message, but they can
be sent consecutively without waiting

I allows separating parameters from the query body

SELECT admin FROM users WHERE login = ’$var’

I disallows sending several commands in one query

SELECT * FROM posts WHERE id = $var

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 31 / 51

Sending queries Extended protocol

Extended query protocol

I query execution is split into separate steps

I each step is confirmed by a separately server message, but they can
be sent consecutively without waiting

I allows separating parameters from the query body

SELECT admin FROM users WHERE login = ’x’ or 1=1; --’

I disallows sending several commands in one query

SELECT * FROM posts WHERE id = $var

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 31 / 51

Sending queries Extended protocol

Extended query protocol

I query execution is split into separate steps

I each step is confirmed by a separately server message, but they can
be sent consecutively without waiting

I allows separating parameters from the query body

SELECT admin FROM users WHERE login = ’x’ or 1=1; --’

I disallows sending several commands in one query

SELECT * FROM posts WHERE id = 1; delete from posts;

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 31 / 51

Sending queries Extended protocol

Extended query protocol

I query execution is split into separate steps

I each step is confirmed by a separately server message, but they can
be sent consecutively without waiting

I allows separating parameters from the query body

SELECT admin FROM users WHERE login = $1

I disallows sending several commands in one query

SELECT * FROM posts WHERE id = $1

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 31 / 51

Sending queries Extended protocol

Parse messages

Parse

'P' int32 len str stmt str query int16 numparams int32 paramoid ...

I first, the client sends a Parse message with the query string

I it can contain placeholders ($1, $2, ...) for parameters
I for each parameter you can specify its type

I disambiguate between select foo(1) and select foo(’x’)

I the statement can be optionally given a name
I unnamed statements live until the next unnamed statement is parsed
I named statements need to be explicitly deallocated

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 32 / 51

Sending queries Extended protocol

Bind messages

Bind

'B' int32 len str portal str stmt +

int16 numformats int16 format ... +

int16 numparams int32 paramlen char[paramlen] param ... +

int16 numresults int16 format ...

I after the query is parsed, the clients binds its parameters
I an output portal is created for a previously parsed statement

I an empty string can be used for the portal name

I for each parameter, its format (binary or text) and value are specified

I finally, for each output column, the requested output format is sent

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 33 / 51

Sending queries Extended protocol

Interlude - Describe messages

Describe

'D' int32 len 'S' or 'P' str name

ParameterDescription

't' int32 len int16 numparams int32 paramoid ...

I clients can ask for a description of a statement or a portal

I statement descriptions are returned as two separate messages:
ParameterDescription and RowDescription

I portal descriptions are just RowDescriptions

I clients can use Describe to make sure they know how to handle data
being returned

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 34 / 51

Sending queries Extended protocol

Execute messages

Execute

'E' int32 len str portal int32 rowlimit

I once the output portal is created, it can be executed

I the output portal is referred to by name

I can specify the number of rows to return, or 0 for all rows

I a series of DataRow messages follow

I no RowDescription is sent

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 35 / 51

Sending queries Extended protocol

Execute messages cont.

I after the portal has been run to completion, CommandComplete is
sent

I if the requested number of rows is less than what the portal would
return a PortalSuspended message is sent

I AFAIK, only JDBC actually exposes limits for Execute

I libpq doesn’t even have code to handle PortalSuspended...

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 36 / 51

Sending queries Extended protocol

Sync messages

Sync

'S' int32 len

I an extended protocol query should end with a Sync

I upon receiving Sync the server closes the transaction if it was implicit
and responds with a ReadyForQuery message

I in case of earlier errors, the server sends an ErrorResponse and then
skips until it sees a Sync

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 37 / 51

Sending queries Extended protocol

Extended query protocol summary

I queries are parsed at Parse stage

I queries are planned at Bind stage

I queries are executed at Execute stage

I with statement logging, these three steps will be timed and logged
separately

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 38 / 51

Sending queries Extended protocol

Extended query protocol flow

Client Server

Parse

Bind

Describe

Execute

Sync

Client Server

ParseOK

BindOK

RowDescription

DataRow

DataRow

DataRow

CommandComplete

ReadyForQuery

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 39 / 51

Sending queries Extended protocol

Advanced extended protocol usage

Client Server

Parse

Sync

ParseOK

ReadyForQuery

Client Server

Bind

Execute

Bind

Execute

Sync

BindOK

CommandComplete

BindOK

CommandComplete

ReadyForQuery

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 40 / 51

Other features The COPY subprotocol

Outline

1 Protocol basics

2 Sending queries

3 Other features
The COPY subprotocol
Less known FEBE features
Future development

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 41 / 51

Other features The COPY subprotocol

Entering COPY mode

CopyInResponse

'G' int32 len int8 format int16 numfields int16 format ...

I sending COPY FROM STDIN or COPY TO STDIN puts the connection in
COPY mode

I this can happen both during simple and extended query processing

I CopyInResponse and CopyOutResponse indicate that the backend has
switched to COPY mode

I they specify the overall format (text or binary) and the format for
each column

I currently if the overall format is binary, all columns are binary

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 42 / 51

Other features The COPY subprotocol

Sending COPY data

CopyData

'd' int32 len data

I CopyData messages are simply binary blobs

I to stop COPY FROM, the client can send a CopyFail message

I when transfer is complete, the client sends CopyDone

I in case of backend errors, an ErrorResponse is sent

I there is no way for the frontend to stop a COPY TO operation, short of
cancelling or disconnecting

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 43 / 51

Other features The COPY subprotocol

COPY subprotocol flow

Client Server

Query - ’COPY tab FROM STDIN’

CopyInResponse

CopyData

CopyData

CopyData

CopyComplete

CommandComplete

ReadyForQuery

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 44 / 51

Other features Less known FEBE features

Outline

1 Protocol basics

2 Sending queries

3 Other features
The COPY subprotocol
Less known FEBE features
Future development

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 45 / 51

Other features Less known FEBE features

Asynchronous operation

NotificationResponse

'A' int32 len int32 pid str channel str payload

I some messages can appear at any moment during the connection
I ParameterStatus
I NoticeResponse
I NotificationResponse

I NOTIFY messages are only sent when a transaction is committed,
but you should expect them at any time

I notices can be sent at any moment

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 46 / 51

Other features Less known FEBE features

Fast-path interface

FunctionCall

'F' int32 len int32 funoid +

int16 numformats int16 format ... +

int16 numparams int32 paramlen char[paramlen] param ... int16 resultformat

I a specialised interface for calling functions
I separate protocol message, FunctionCall, similar to Query

I the function is identified by its OID
I arguments format and values are specified similar to Bind

I libpq documentation calls it “somewhat obsolete” :)

I can be substituted by a named Parse followed by Bind/Execute

I still used by libpq for large object functions

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 47 / 51

Other features Less known FEBE features

Replication subprotocol

I entered using a special replication parameter in the startup packet

I switches the server to a mode where only the simple query protocol
can be used

I instead of SQL, the server accepts replication commands
I for example, START REPLICATION or BASE BACKUP

I responses are a mix of RowDescription/DataRow and COPY
subprotocol data

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 48 / 51

Other features Future development

Outline

1 Protocol basics

2 Sending queries

3 Other features
The COPY subprotocol
Less known FEBE features
Future development

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 49 / 51

Other features Future development

Protocol version 4.0

There are surprisingly few gripes about protocol 3.0, but some proposals
have been floated on the development list.

I protocol compression

I adding nullable indicator to RowDescription

I multi-stage authentication, allowing falling back to a different
authentication method

I negotiating the protocol version

I in-band query cancellation

I sending per-statement GUC

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 50 / 51

Other features Questions

Questions?

Jan Urbański (Ducksboard) Postgres on the wire PGCon 2014 51 / 51

	Protocol basics
	Frame format
	Message flow

	Sending queries
	Simple protocol
	Extended protocol

	Other features
	The COPY subprotocol
	Less known FEBE features
	Future development

