
The Entity-Attribute-Value Data Model!
!
PGCon!
May 23, 2014

Mark Wong!
mark.wong@myemma.com!
Emma Email Marketing!
!
@emmaemailtech

An Adventure in Data Modeling

Who is Emma?

At Emma, we're out to create a world-class
brand that's known and loved by marketers,
designers and business owners everywhere.

And we're well on our way, supporting the
email marketing efforts of roughly 40,000

businesses, nonprofits and agencies doing all
sorts of interesting things in all sorts of

interesting places, assuming Belgium makes
your list of interesting places, and why

wouldn't it?
!

http://myemma.com

Stylish Email Marketing

http://myemma.com

Tell a story about some of our Postgres
performance experiences with the

evolution of the data model around our
member information, where we stumbled
along the way, and how we are carrying

on.

Why am I here?

Member information is an account's email
list and any additional attributes that the
customer desires such as:

• first name

• last name

• favorite database

What is member information?

• Horizontally partitioned data by account
using table inheritance

• 14 child tables created per account

• Exporting member information was fast
and easy because all member
information were contained in a single
table

Once upon a time…

email first_name last_name favorite_dbms
josh at agliodbs.com Josh Berkus PostgreSQL
peter_e at gmx.net Peter Eisentraut SQLite
magnus at hagander.net Magnus Hagander PostgreSQL
tgl at sss.pgh.pa.us Tom Lane PostgreSQL
bruce at momjian.us Bruce Momjian PostgreSQL
dpage at pgadmin.org Dave Page PostgreSQL

• If my members were the PostgreSQL
Core Team:

!
COPY userdata_88888_members	
TO ‘members-88888.csv’ (FORMAT CSV)

Example of member information

• Over 40,000 accounts in the system

• Hard to mine data

• Well over one million objects in the
system (tables, indexes, sequences, etc.)

• Hard to administer database system

• Induced ALTER TABLE statements
whenever an attribute is added on a heavily
accessed table

What was wrong?

• How many marketing campaigns were
sent yesterday?

• Getting counts from the parent tables
would need 40,000 locks, one per child
table

• More complex queries would start
adding tables to join

Example of simple data mining exercise

• Backups with pg_dump takes more than
whole day for less than 1 terabyte of
data

• Would only run backups over the
weekend

Issues with a large system catalog

Time to do something dramatic!

Highlighting a few of the changes that occurred:

• Reduced the number of database objects by
horizontally partitioning into a fixed number of
tables (1024 partitions)

• Approximately 1 GB of data per partition

• Developed home grown Python middleware layer
between Web front end and database systems

• Major database schema refactor: applied entity-
attribute-value data model to member information

A few years ago…

Entity-attribute-value model (EAV) is a data model to
describe entities where the number of attributes

(properties, parameters) that can be used to
describe them is potentially vast, but the number that

will actually apply to a given entity is relatively
modest.

…
EAV is also known as object-attribute-value model,

vertical database model and open schema.
!

http://en.wikipedia.org/wiki/Entity-attribute-value_model

http://en.wikipedia.org/wiki/Entity-attribute-value_model

• Pros

• Avoid expensive ALTER TABLE statements
when adding or removing member
attributes

• Cons

• Data will need to be queried differently

• Data type checking either done using
multiple tables or multiple columns (opted
for latter)

What we knew before applying EAV

Three tables make up the model:

• Entity: member table contains attributes that
all members must have, e.g. email address

• Attribute: field table contains the custom
attributes that users defines, e.g. favorite
database management system

• Value: member_field table contains the
values for custom attributes defined in the
field table

EAV table descriptions

EAV ER Digram

• Uses SQLAlchemy ORM to pull data
and performs a data pivot

• Restricts API calls to return up to 500
members per call

The middleware layer

• Before pivot:

!

!

!

• After pivot:

Pivoting data

email field_name value
josh at agliodbs.com first_name Josh
josh at agliodbs.com last_name Berkus
josh at agliodbs.com favorite_dbms PostgreSQL

email first_name last_name favorite_dbms
josh at agliodbs.com Josh Berkus PostgreSQL

That doesn’t look so bad, right?
How much data might our customers have?

Ranked in order of potentially most values:

Sample of account sizes

rank account members fields values max values
1 41383 994,684 119 32,079,663 118,367,396
2 21322 1,902,163 59 5,354,715 112,227,617
3 2451 4,661,264 22 844,881 102,547,808
4 1703180 3,884,321 26 9,933,392 100,992,346
5 41997 737,432 87 4,115,583 64,156,584
6 18528 1,120,968 52 6,310,398 58,290,336
7 4393 656,672 85 5,175,631 55,817,120
8 1366214 470,107 109 7,272,797 51,241,663

How long it takes to export member
information?

All exports failed for our largest accounts!

Something is taking too long:

• PostgreSQL statement timeouts; disable
statement timeout?

• Apache HTTP timeouts; don’t go through
the Web server?

• Network switches TCP/IP idle timeouts;
get closer to the database server?

Where are we failing?

After bypassing as many things as
possible and extracting Python code to
run directly against the database:

Exporting directly from the database system

rank account members values runtime
1 41383 994,684 32,079,663 DNF
2 21322 1,902,163 5,354,715 DNF
7 4393 656,672 5,175,631 4 hours

Maybe the middleware shouldn't be trying to do that much work.
!

Maybe the database management system can help…

PostgreSQL provides the extension
tablefunc containing the crosstab() data
pivoting functions.

http://www.postgresql.org/docs/current/static/tablefunc.html

The database can pivot data

http://www.postgresql.org/docs/current/static/tablefunc.html

Spoiler alert!

Postgres pivots data faster than how we did it in Python

If you use the correct crosstab function…

I have Emma’s favorite DBMS, but not her
last name. These crosstab functions puts
only non-NULL data into the next column
pivoted and pads any remaining columns
with NULLs.

crosstab(text sql) and crosstabN(text sql)

email first_name last_name favorite_dbms
josh at agliodbs.com Josh Berkus PostgreSQL
peter_e at gmx.net Peter Eisentraut SQLite
magnus at hagander.net Magnus Hagander PostgreSQL
tgl at sss.pgh.pa.us Tom Lane PostgreSQL
emma at myemma.com Emma MongoDB

This crosstab function aligns the data with
the column it is pivoted to.

crosstab(text source_sql, text category_sql)

email first_name last_name favorite_dbms
josh at agliodbs.com Josh Berkus PostgreSQL
peter_e at gmx.net Peter Eisentraut SQLite
magnus at hagander.net Magnus Hagander PostgreSQL
tgl at sss.pgh.pa.us Tom Lane PostgreSQL
emma at myemma.com Emma MongoDB

How much of a positive improvement was crosstab?

Timed python script running directly
against database system:

Results from using crosstab

rank! account members values previously runtime
1 41383 994,684 32,079,663 DNF 22 min
2 21322 1,902,163 5,354,715 DNF 17 min
7 4393 656,672 5,175,631 4 hours 10 min

Much faster!

• Cannot use ORM to model pivoted data

• Small exports (in the 100’s) appear to
take a little longer

There are some tradeoffs

Exports will fail again if we take on
accounts somewhere between 5 to 10
million members

Not all problems solved

• Retrieving data from EAV model seems
inefficient

• Performance issues begin when pivoting
only millions of rows

What we knew after having EAV

We still need to do better

What can we do?

Time to explore other options

–Most popular question asked within Emma.

“What if we remove the member_field table
from the database altogether?”

Let’s prototype a different data model in Postgres

First look at hstore as a key/value data store…

This module implements the hstore data
type for storing sets of key/value pairs
within a single PostgreSQL value. This can
be useful in various scenarios, such as
rows with many attributes that are rarely
examined, or semi-structured data. Keys
and values are simply text strings.

http://www.postgresql.org/docs/current/static/hstore.html

Maybe the hstore extension can help proof a solution

http://www.postgresql.org/docs/current/static/hstore.html

Things to note before going in:

• No strict types; everything is a string

• No referential integrity constraints;
cannot create a foreign key between an
hstore key and a table column

• psycopg2 and SQLAlchemy support for
hstore not released at the time, but are
now

Cons to hstore data type

Put the member attribute values into the
member table as the hstore column field.
The key in field's key/value pair is the field
name.

What does hstore look like

email field

josh at agliodbs.com
“first_name”=>”Josh”,
“last_name”=>”Berkus”,
“favorite_dbms”=>“PostgreSQL”

peter_e at gmx.net
“first_name”=>”Peter”,
“last_name”=>”Eisentraut”,
“favorite_dbms”=>“PostgreSQL”

magnus at hagander.net
“first_name”=>”Magnus”,
“last_name”=>”Hagander”,
“favorite_dbms”=>“PostgreSQL”

Is it hard to convert EAV to key/value model?

Approximately 2 minutes to transform a single partition:!
!
WITH u AS (
 WITH t AS (
 SELECT member_id, shortcut_name,	
 CASE WHEN f.field_type = 'text' THEN mf.text_value	
 WHEN f.field_type = 'text[]' THEN mf.array_value::TEXT	
 WHEN f.field_type = 'numeric' THEN mf.numeric_value::TEXT	
 WHEN f.field_type = 'boolean' THEN mf.boolean_value::TEXT	
 WHEN f.field_type = 'date' THEN date_value::TEXT	
 ELSE NULL END AS value	
 FROM field f, member_field mf	
 WHERE f.field_id = mf.field_id	
)	
 SELECT member_id,	
 string_agg(hstore(shortcut_name, value)::TEXT, ',')::HSTORE AS hst	
 FROM t GROUP BY member_id	
)	
UPDATE member	
SET field = hst	
FROM u	
WHERE u.member_id = member.member_id;	

Converting to hstore is fairly fast

COPY (
 SELECT email,	
 field -> 'name_first' AS first_name,	
 field -> 'name_last' AS last_name,	
 field -> 'favorite_dbms' AS favorite_dbms	
 FROM member m	
 WHERE m.account_id = 88888)	
TO ‘audience-88888.csv’ (FORMAT CSV)

Exporting member information with hstore

How fast is exporting member information with hstore?

Exporting member information is pretty fast

rank account members values SQLAlchemy crosstab hstore
7 4393 656,672 5,175,631 4 hours 10 min 15 sec

Are we done yet?

Have only looked at hstore thus far…

• Use crosstab to pivot data in parts

• Use HSTORE on the fly since converting data seems
relatively quick

• JSON to get some strict type checking (except dates)

• BSON?

• External data store

• Yet another data model

• XML might be used to get strict type checking with
DTD

Other things to try, maybe

Thank you!

