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Who I am

● Álvaro Hernández Tortosa <aht@Nosys.es>
● CTO @ NOSYS
● What we do @NOSYS:

✔ Training, consulting and development in 
PostgreSQL (and Java)
✔ EnterpriseDB partners
✔ Java training. Javaspeciaslits.eu: Java Master 
Course 
✔ AWS partners. Training and architecting in AWS

● Twitter: @ahachete
● LinkedIn: http://es.linkedin.com/in/alvarohernandeztortosa/

mailto:aht@Nosys.es
http://es.linkedin.com/in/alvarohernandeztortosa/


  

What is a “large” database?

● Single-node databases of up to TBs / dozens TBs.
Billions / trillions of records

● Multi-node databases, virtually unlimited. Reportedly 
hundreds of TBs, PBs

● This talk is not about Big Data. It's just about Big Data

● Indeed, we're talking here about Big MetaData
(and the world's worst data/metadata ratio ever)



  

Database “types” (by number of tables)

Database # Tables

SLST Schema-Less-Like, Single-Table 1
EDNECRM Extremely De-Normalized Enterprise CRM 2
S Small 20
M Medium 80
L Large 200
XL Extra Large 1,000
ORMGW ORMs Gone Wild 5,000
MT Multi-Tenancy 50,000
MMT Massive Multi-Tenancy 1,000,000
BTP Billion Tables Project 1,000,000,000



  

Database “types” (II)
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Theoretical PostgreSQL limits

Feature Limit

# attributes / table 250-1600 (depending on 
attribute types)

Max size / attribute 1GB

Max size / row 1.6 TB

Max # rows / table unlimited

Max size / table 32 TB

Max # tables / database unlimited

Max size / database unlimited



  

Where it all started...

● 2002, mail to pgsql-admin@postgresql.org:

“I'm guessing that the maximum number of tables is related 
to how much can be stored in the pg_ tables […]. So, based 
on that, the maximum number of rows is unlimited and the 
maximum size for a table is 64 TB.  So realistically, you 
would need an enormous number (trillions) of tables to 
exceed that limit”

Simon Cawley
http://www.postgresql.org/message-id/53386E0C47E7D41194BB0002B325C997747F2B@NTEX60

http://www.postgresql.org/message-id/53386E0C47E7D41194BB0002B325C997747F2B@NTEX60


  

Where it all started... (II)

http://it.toolbox.com/blogs/database-soup/one-billion-tables-or-bust-46270

May 21th, 2011

http://it.toolbox.com/blogs/database-soup/one-billion-tables-or-bust-46270


  

So... why do it?
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● To prove PostgreSQL has no limits on the # of tables

● To stress PostgreSQL in an unusual way

● To test a new server before going to production

● To beat Josh Berkus, creating tables faster than him ;)

● “Mine is bigger than yours” (database)

● Because we can



  

Re-defining “tps”

Wikipedia (http://en.wikipedia.org/wiki/Transactions_per_second):

“Transactions Per Second refers to the number of atomic 
actions performed by certain entity per second”

From now on, for this presentation, it simply is:

“tables per second”

http://en.wikipedia.org/wiki/Transactions_per_second


  

First attempts (2011)

● Josh Berkus
(http://it.toolbox.com/blogs/database-soup/one-billion-tables-or-bust-46270): 
3M tables, 83 tps. Server crashed (out of disk). Serial + text

● Jan Urbanski
(http://it.toolbox.com/blogs/database-soup/one-billion-tables-part-2-46349): 
4.6M tables, 1K tps. Server crashed (inodes). Int + text

● $SELF
(http://it.toolbox.com/blogs/database-soup/one-billion-tables-part-2-46349): 
10M tables, 2K2 tps. Stopped. Single int column
100M tables, 1K5 tps. Stopped. Single int column

http://it.toolbox.com/blogs/database-soup/one-billion-tables-or-bust-46270
http://it.toolbox.com/blogs/database-soup/one-billion-tables-part-2-46349
http://it.toolbox.com/blogs/database-soup/one-billion-tables-part-2-46349


  

First problems: running out of storage

● pg_class storage

● Filesystem storage



  

100M tables. How to get there?

● We need RAM:
Out of memory: kill process 4143 (postgres) score 
235387 or a child
Killed process 4146 (postgres)

● Use a FS capable of handling a large # of files: reiserfs

● Table creation strategy:
➔ Don't use a pre-created CSV or .sql file
➔ Don't use a driver over TCP/IP
➔ Best solution: feed SQL commands via stdin

with psql over unix domain sockets



  

100M tables. How to get there? (II)

Tune postgresql.conf:

fsync = off
synchronous_commit = off
full_page_writes = off
wal_buffers = 256MB
autovacuum = off
max_locks_per_transaction = 10000
shared_buffers = 16384MB
checkpoint_segments = 128



  

100M tables. How to get there? (III)

Server setup:

● Intel Core 2 CPU
● 4GB RAM
● 3X 1TB SATA 7K2 rpm, RAID 0
● Reiserfs
● Ubuntu 10.04
● PostgreSQL 9.0



  

100M tables. The script



  

100M tables. The results
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The road to 1B tables. Your worst enemies

● Autovacuum
(but wasn't it autovacuum = off ?)

autovacuum_freeze_max_age = 2000000000
# maximum XID age before forced vacuum

● updatedb
(who the hell enables it by default???????)



  

The road to 1B tables. Storage

● Separate base from tables dir

● Create a tablespace (or more –see later) in a reiserfs 
partition (we named it “/data”)

● Best performance achieved with base on xfs (“/bigdata”)
Large appends, works as a “normal” database

● WAL records on RAM (tmpfs with swap to avoid overruns, 
“/xlog”)



  

The road to 1B tables. A larger pizza

● 2X Intel(R) Xeon(R) CPU E5-2650 @ 2.00GHz
(16 cores, 32 threads)

● 48GB RAM

● Modern SO and postgres:
➔ Debian wheezy (kernel 3.2.41)
➔ PostgreSQL 9.2.4

● Just 6 seconds to “make -j16” postgresql src



  

The road to 1B tables. Storage (II)



  

The road to 1B tables. Tablespaces

● Except for reiserfs, any fs degrades very fast with # files

● Even reiserfs degrades after several millions

● Solution: create as many tablespaces as desired
(even in the same, reiserfs fs)

● For the 1B run, we used 1000 tablespaces for optimal 
performance



  

The road to 1B tables. Concurrency

● Table creation is not disk-limited: avg disk throughtput was 
< 5MB/s on the 100M tables test

● There are two main limits:
➔ CPU speed (backends rise to 100% if run alone)
➔ Contention

● To improve performance, we launched several processes in 
background

● 16 processes proved to be the sweet spot



  

The road to 1B tables. Concurrency (II)

● With multiple processes, we cannot have each process log 
its own set of log data (really difficult to merge, no 
status/progress snapshot)

● We run another process to log the data:
➔ The logger process has the PID of every worker
➔ When the logger wants to log data, sends 
SIGUSR1 to workers
➔ The logger waits for input in a fifo identified by 
worker PID
➔ The worker writes the actual number of tables
and whether it already finished



  

The road to 1B tables. The source code

● Worker is a python script:
➔ Divides the number of tables (assigned to the 
worker) in iterations
➔ For each iteration, spawns a psql and feeds CREATE 
TABLE … TABLESPACE … statements via stdin
➔ When signaled USR1, writes # tables to fifo
➔ Exits when signaled TERM (by logger process)
➔ Iterations run in its own thread

● Logger is a shell script. When signaled USR1, logs data
● Main is a shell script. Launches all processes
and signals logger when to log (every 10s)



  

The road to 1B tables. The source code (II)



  

btp-main.sh



  

btp-process.py



  

btp-logger.sh



  

1B tables. So, did it work?

$ time ./btp-main.sh 1000000000 16 50000 1000
real    2022m19.961s
user    240m7.044s
sys     165m25.336s
(aka 33h 42m 20s)

● Avg: 8242tps

btp=# SELECT txid_current();
 txid_current 
--------------
   1000001685



  

1B tables. So, did it work? (II)

$ echo -e '\\timing on\nSELECT count(*) FROM 
pg_class' |psql btp
   count
------------
 1000000288
Time: 9221642.102 ms

$ df -h /data /bigdata /var/tmp
Filesystem               Size  Used Avail Use% Mounted on

/dev/mapper/vgMain-data  500G   97G  404G  20% /data

/dev/etherd/e15.0        5.5T  2.6T  3.0T  46% /bigdata

tmpfs                     90G  4.1G   86G   5% /var/tmp



  

1B tables. So, did it work? (III)

btp=# SELECT relname, heap_blks_read, heap_blks_hit, 
idx_blks_read, idx_blks_hit FROM pg_statio_all_tables WHERE 
relname IN ('pg_tablespace', 'pg_database', 'pg_shdepend');

    relname    | heap_blks_read | heap_blks_hit | idx_blks_read | idx_blks_hit 

---------------+----------------+---------------+---------------+--------------

 pg_tablespace |             35 |    6226009368 |            13 |         6794

 pg_database   |              3 |         63015 |            12 |       105017

 pg_shdepend   |              1 |    1000001001 |             5 |   1001537778

btp=# INSERT INTO _3ade68b1 VALUES (2), (3);

Time: 20.673 ms

btp=# SELECT * FROM _3ade68b1 LIMIT 1;

[...] 

Time: 0.207 ms



  

1B tables. How long does a “\dt” take?

$ time ./postgresql-9.2.4/bin/psql btp -c "\dt" > tables

∞
ERROR:  canceling statement due to user request

real    2993m51.710s

user    0m0.000s

sys     0m0.000s

cancelled by pg_cancel_backend()



  

1B tables. Performance
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1B tables. Performance (II)

Avg backends load: 57%
Avg system load: 11.7
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1B tables. Make the db durable again

● Stop server. Move pg_xlog to disk 

● Tune postgresql.conf:

fsync = on
synchronous_commit = on
full_page_writes = on
autovacuum = off

● Restart server. Enjoy ;)
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