

Billion Tables Project (BTP)

Álvaro Hernández Tortosa <aht@Nosys.es>

José Luis Tallón <jltallon@Nosys.es>

mailto:aht@Nosys.es

Who I am

● Álvaro Hernández Tortosa <aht@Nosys.es>
● CTO @ NOSYS
● What we do @NOSYS:

✔ Training, consulting and development in
PostgreSQL (and Java)
✔ EnterpriseDB partners
✔ Java training. Javaspeciaslits.eu: Java Master
Course
✔ AWS partners. Training and architecting in AWS

● Twitter: @ahachete
● LinkedIn: http://es.linkedin.com/in/alvarohernandeztortosa/

mailto:aht@Nosys.es
http://es.linkedin.com/in/alvarohernandeztortosa/

What is a “large” database?

● Single-node databases of up to TBs / dozens TBs.
Billions / trillions of records

● Multi-node databases, virtually unlimited. Reportedly
hundreds of TBs, PBs

● This talk is not about Big Data. It's just about Big Data

● Indeed, we're talking here about Big MetaData
(and the world's worst data/metadata ratio ever)

Database “types” (by number of tables)

Database # Tables

SLST Schema-Less-Like, Single-Table 1
EDNECRM Extremely De-Normalized Enterprise CRM 2
S Small 20
M Medium 80
L Large 200
XL Extra Large 1,000
ORMGW ORMs Gone Wild 5,000
MT Multi-Tenancy 50,000
MMT Massive Multi-Tenancy 1,000,000
BTP Billion Tables Project 1,000,000,000

Database “types” (II)

SLST ENNECRM S M L XL ORMGW MT MMT BTP
0

10

20

30

40

50

60

70

80

90

100

Number of tables by database type

10
 lo

g_
1

0
(#

 ta
bl

es
)

Theoretical PostgreSQL limits

Feature Limit

attributes / table 250-1600 (depending on
attribute types)

Max size / attribute 1GB

Max size / row 1.6 TB

Max # rows / table unlimited

Max size / table 32 TB

Max # tables / database unlimited

Max size / database unlimited

Where it all started...

● 2002, mail to pgsql-admin@postgresql.org:

“I'm guessing that the maximum number of tables is related
to how much can be stored in the pg_ tables […]. So, based
on that, the maximum number of rows is unlimited and the
maximum size for a table is 64 TB. So realistically, you
would need an enormous number (trillions) of tables to
exceed that limit”

Simon Cawley
http://www.postgresql.org/message-id/53386E0C47E7D41194BB0002B325C997747F2B@NTEX60

http://www.postgresql.org/message-id/53386E0C47E7D41194BB0002B325C997747F2B@NTEX60

Where it all started... (II)

http://it.toolbox.com/blogs/database-soup/one-billion-tables-or-bust-46270

May 21th, 2011

http://it.toolbox.com/blogs/database-soup/one-billion-tables-or-bust-46270

So... why do it?

Of
fc

ial
 re

as
on
s

In
 re

ali
ty
...

● To prove PostgreSQL has no limits on the # of tables

● To stress PostgreSQL in an unusual way

● To test a new server before going to production

● To beat Josh Berkus, creating tables faster than him ;)

● “Mine is bigger than yours” (database)

● Because we can

Re-defining “tps”

Wikipedia (http://en.wikipedia.org/wiki/Transactions_per_second):

“Transactions Per Second refers to the number of atomic
actions performed by certain entity per second”

From now on, for this presentation, it simply is:

“tables per second”

http://en.wikipedia.org/wiki/Transactions_per_second

First attempts (2011)

● Josh Berkus
(http://it.toolbox.com/blogs/database-soup/one-billion-tables-or-bust-46270):
3M tables, 83 tps. Server crashed (out of disk). Serial + text

● Jan Urbanski
(http://it.toolbox.com/blogs/database-soup/one-billion-tables-part-2-46349):
4.6M tables, 1K tps. Server crashed (inodes). Int + text

● $SELF
(http://it.toolbox.com/blogs/database-soup/one-billion-tables-part-2-46349):
10M tables, 2K2 tps. Stopped. Single int column
100M tables, 1K5 tps. Stopped. Single int column

http://it.toolbox.com/blogs/database-soup/one-billion-tables-or-bust-46270
http://it.toolbox.com/blogs/database-soup/one-billion-tables-part-2-46349
http://it.toolbox.com/blogs/database-soup/one-billion-tables-part-2-46349

First problems: running out of storage

● pg_class storage

● Filesystem storage

100M tables. How to get there?

● We need RAM:
Out of memory: kill process 4143 (postgres) score
235387 or a child
Killed process 4146 (postgres)

● Use a FS capable of handling a large # of files: reiserfs

● Table creation strategy:
➔ Don't use a pre-created CSV or .sql file
➔ Don't use a driver over TCP/IP
➔ Best solution: feed SQL commands via stdin

with psql over unix domain sockets

100M tables. How to get there? (II)

Tune postgresql.conf:

fsync = off
synchronous_commit = off
full_page_writes = off
wal_buffers = 256MB
autovacuum = off
max_locks_per_transaction = 10000
shared_buffers = 16384MB
checkpoint_segments = 128

100M tables. How to get there? (III)

Server setup:

● Intel Core 2 CPU
● 4GB RAM
● 3X 1TB SATA 7K2 rpm, RAID 0
● Reiserfs
● Ubuntu 10.04
● PostgreSQL 9.0

100M tables. The script

100M tables. The results

5
10

15
20

25
30

35
40

45
50

55
60

65
70

75
80

85
90

95
100

0

500

1000

1500

2000

2500

3000

100M tables

Intel Core 2, 4GB RAM, 3TB reiser

time (min)
speed (tps)

M tables

 Disk usage: 257GB

The road to 1B tables. Your worst enemies

● Autovacuum
(but wasn't it autovacuum = off ?)

autovacuum_freeze_max_age = 2000000000
maximum XID age before forced vacuum

● updatedb
(who the hell enables it by default???????)

The road to 1B tables. Storage

● Separate base from tables dir

● Create a tablespace (or more –see later) in a reiserfs
partition (we named it “/data”)

● Best performance achieved with base on xfs (“/bigdata”)
Large appends, works as a “normal” database

● WAL records on RAM (tmpfs with swap to avoid overruns,
“/xlog”)

The road to 1B tables. A larger pizza

● 2X Intel(R) Xeon(R) CPU E5-2650 @ 2.00GHz
(16 cores, 32 threads)

● 48GB RAM

● Modern SO and postgres:
➔ Debian wheezy (kernel 3.2.41)
➔ PostgreSQL 9.2.4

● Just 6 seconds to “make -j16” postgresql src

The road to 1B tables. Storage (II)

The road to 1B tables. Tablespaces

● Except for reiserfs, any fs degrades very fast with # files

● Even reiserfs degrades after several millions

● Solution: create as many tablespaces as desired
(even in the same, reiserfs fs)

● For the 1B run, we used 1000 tablespaces for optimal
performance

The road to 1B tables. Concurrency

● Table creation is not disk-limited: avg disk throughtput was
< 5MB/s on the 100M tables test

● There are two main limits:
➔ CPU speed (backends rise to 100% if run alone)
➔ Contention

● To improve performance, we launched several processes in
background

● 16 processes proved to be the sweet spot

The road to 1B tables. Concurrency (II)

● With multiple processes, we cannot have each process log
its own set of log data (really difficult to merge, no
status/progress snapshot)

● We run another process to log the data:
➔ The logger process has the PID of every worker
➔ When the logger wants to log data, sends
SIGUSR1 to workers
➔ The logger waits for input in a fifo identified by
worker PID
➔ The worker writes the actual number of tables
and whether it already finished

The road to 1B tables. The source code

● Worker is a python script:
➔ Divides the number of tables (assigned to the
worker) in iterations
➔ For each iteration, spawns a psql and feeds CREATE
TABLE … TABLESPACE … statements via stdin
➔ When signaled USR1, writes # tables to fifo
➔ Exits when signaled TERM (by logger process)
➔ Iterations run in its own thread

● Logger is a shell script. When signaled USR1, logs data
● Main is a shell script. Launches all processes
and signals logger when to log (every 10s)

The road to 1B tables. The source code (II)

btp-main.sh

btp-process.py

btp-logger.sh

1B tables. So, did it work?

$ time ./btp-main.sh 1000000000 16 50000 1000
real 2022m19.961s
user 240m7.044s
sys 165m25.336s
(aka 33h 42m 20s)

● Avg: 8242tps

btp=# SELECT txid_current();
 txid_current

 1000001685

1B tables. So, did it work? (II)

$ echo -e '\\timing on\nSELECT count(*) FROM
pg_class' |psql btp
 count

 1000000288
Time: 9221642.102 ms

$ df -h /data /bigdata /var/tmp
Filesystem Size Used Avail Use% Mounted on

/dev/mapper/vgMain-data 500G 97G 404G 20% /data

/dev/etherd/e15.0 5.5T 2.6T 3.0T 46% /bigdata

tmpfs 90G 4.1G 86G 5% /var/tmp

1B tables. So, did it work? (III)

btp=# SELECT relname, heap_blks_read, heap_blks_hit,
idx_blks_read, idx_blks_hit FROM pg_statio_all_tables WHERE
relname IN ('pg_tablespace', 'pg_database', 'pg_shdepend');

 relname | heap_blks_read | heap_blks_hit | idx_blks_read | idx_blks_hit

---------------+----------------+---------------+---------------+--------------

 pg_tablespace | 35 | 6226009368 | 13 | 6794

 pg_database | 3 | 63015 | 12 | 105017

 pg_shdepend | 1 | 1000001001 | 5 | 1001537778

btp=# INSERT INTO _3ade68b1 VALUES (2), (3);

Time: 20.673 ms

btp=# SELECT * FROM _3ade68b1 LIMIT 1;

[...]

Time: 0.207 ms

1B tables. How long does a “\dt” take?

$ time ./postgresql-9.2.4/bin/psql btp -c "\dt" > tables

∞
ERROR: canceling statement due to user request

real 2993m51.710s

user 0m0.000s

sys 0m0.000s

cancelled by pg_cancel_backend()

1B tables. Performance

20
80

200
260

300
320

340
380

440
460

540
600

620
640

680
860

1000

0

2000

4000

6000

8000

10000

12000

1B tables. Performance

Tables per second

tps

M tables

Peak: 10Ktps

1B tables. Performance (II)

Avg backends load: 57%
Avg system load: 11.7

20
80

200
260

300
320

340
380

440
460

540
600

620
640

680
860

1000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1B tables

Memory usage

mem free (MB)
buffers (MB)
Cached (MB)

M tables

1B tables. Make the db durable again

● Stop server. Move pg_xlog to disk

● Tune postgresql.conf:

fsync = on
synchronous_commit = on
full_page_writes = on
autovacuum = off

● Restart server. Enjoy ;)

Acknowledgements

● Josh Berkus (and Selena Deckelmann, Jan Urbanski and
Álvaro Herrara) who seem responsible for this crazy idea

● Big, big thanks to José Luis Tallón:
➔ For bringing in the server and fine-tunning it

➔ For co-authoring, co-working, co-architecting, co-
programming and co-enjoying this project

● PgCon organization and sponsors :)

Billion Tables Project (BTP)

Álvaro Hernández Tortosa <aht@Nosys.es>

José Luis Tallón <jltallon@Nosys.es>

mailto:aht@Nosys.es

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

