
Estimating query progress
Theory and practice of query progress indication

Jan Urbański
j.urbanski@wulczer.org

Ducksboard

PGCon 2013, Ottawa, May 24

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 1 / 46



For those following at home

Getting the slides

$ wget http://wulczer.org/pg-progress.pdf

Trying the code*

$ git clone git://github.com/wulczer/pg-progress.git

$ make install && psql -c ’create extension progress’

$ ./show-progress.py -c ’table tab1’ dbname=progress

* requires modified Postgres from git://github.com/wulczer/postgres/tree/progress-rebasing

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 2 / 46



1 Problem
Problem statement
Qualities of a good estimator

2 Theory
Model of work for query execution
Execution pipelines
Driver node estimator

3 Practice
Implementation
Hurdles
What next?

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 3 / 46



Problem Problem statement

Outline

1 Problem
Problem statement
Qualities of a good estimator

2 Theory

3 Practice

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 4 / 46



Problem Problem statement

Should I kill it yet?

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 5 / 46



Problem Problem statement

Usefulness of progress estimation

I Postgres gives no feedback for running queries

I it’s hard to decide how much more time will a query take

I the decision between cancelling a heavyweight query and letting it
complete is uninformed

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 6 / 46



Problem Problem statement

The devil is in the details

I while the use case is straightforward, the details are not
I what should be an estimator’s output?

I “work done”
I percentage completed
I time remaining

I how should the estimation be relayed to the outside
I the backend running the query is busy... running the query

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 7 / 46



Problem Qualities of a good estimator

Outline

1 Problem
Problem statement
Qualities of a good estimator

2 Theory

3 Practice

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 8 / 46



Problem Qualities of a good estimator

What makes a good estimator

monotonicity the estimator’s value should always grow

granularity estimates should vary across small time increments

low overhead calculating progress should not be prohibitively
expensive

hardware independence changes in the estimates should not depend on
how fast the system is

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 9 / 46



Theory Model of work for query execution

Outline

1 Problem

2 Theory
Model of work for query execution
Execution pipelines
Driver node estimator

3 Practice

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 10 / 46



Theory Model of work for query execution

Concepts inside the executor

I the executor works with a tree structure

I the executor tree mirrors the plan tree node for node

I each node has a method to produce a tuple or NULL if it’s finished

I executing the plan is repeatedly fetching a tuple from the root node

Executing a query

while (true) {

tup = ExecProcNode(root);

if (tup == NULL)

break;

emit(tup);

}

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 11 / 46



Theory Model of work for query execution

Concepts inside the executor

I the executor works with a tree structure

I the executor tree mirrors the plan tree node for node

I each node has a method to produce a tuple or NULL if it’s finished

I executing the plan is repeatedly fetching a tuple from the root node

Executing a query

while (true) {

tup = ExecProcNode(root);

if (tup == NULL)

break;

emit(tup);

}

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 11 / 46



Theory Model of work for query execution

Individual node execution

I each node has its own execution method
I for Sequential Scans it fetches the next tuple from the heap
I for Materialization it fetches and stores the next tuple from its child

node
I for Sort it stores all the tuples from its child node, sorts them and

returns the top one

I nodes can carry additional instrumentation, that gets updated when
they are executed

I each executor node has a link to the correspoding planner node,
where estimates are kept

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 12 / 46



Theory Model of work for query execution

Executor tree example

An example executor tree looks like this:

IndexScan

IndexScan SeqScan

NestLoop IndexScan

NestLoop

NestLoop

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 13 / 46



Theory Model of work for query execution

Existing research

The basic idea explained here comes from a research paper by Surajit
Chaudhuri and Vivek Narasayya from Microsoft Research and Ravi
Ramamurthy from the University of Wisconsin.

Chaudhuri, Surajit and Narasayya, Vivek and Ramamurthy,
Ravishankar.
Estimating progress of SQL queries.
SIGMOD ’04, 803–814, 2004.

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 14 / 46



Theory Model of work for query execution

Model of work

I query progress is expressed as the number tuples returned from all
execution nodes

I that’s called the GetNext() model in the paper

I a query is completed when all nodes have finished returning tuples

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 15 / 46



Theory Model of work for query execution

Estimator definition

GetNext() model estimator

Assume the execution plan has m nodes.

For i = 1..m, we define Ni as the number of tuples that it will return and
Ki as the number of tuples it has already returned.

The estimator we’ll use is

gnm =
sum of all tuples returned

sum of all tuples to be returned

The basic challenge is estimating Ni .

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 16 / 46



Theory Model of work for query execution

Estimator definition

GetNext() model estimator

Assume the execution plan has m nodes.

For i = 1..m, we define Ni as the number of tuples that it will return and
Ki as the number of tuples it has already returned.

The estimator we’ll use is

gnm =
sum of all tuples returned

sum of all tuples to be returned

The basic challenge is estimating Ni .

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 16 / 46



Theory Model of work for query execution

Estimator definition

GetNext() model estimator

Assume the execution plan has m nodes.

For i = 1..m, we define Ni as the number of tuples that it will return and
Ki as the number of tuples it has already returned.

The estimator we’ll use is

gnm =
sum of all tuples returned

sum of all tuples to be returned

The basic challenge is estimating Ni .

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 16 / 46



Theory Model of work for query execution

Estimator definition

GetNext() model estimator

Assume the execution plan has m nodes.

For i = 1..m, we define Ni as the number of tuples that it will return and
Ki as the number of tuples it has already returned.

The estimator we’ll use is

gnm =
sum of all tuples returned

sum of all tuples to be returned

The basic challenge is estimating Ni .

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 16 / 46



Theory Model of work for query execution

Properties of gnm

I kind of, sort of computable in Postgres :)

I reasonably straightforward definition

I monotonous (usually), fine-grained

I can work off planner estimates, most of the necessary info is already
being collected

I but planner estimates can be wrong, especially with joins present

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 17 / 46



Theory Execution pipelines

Outline

1 Problem

2 Theory
Model of work for query execution
Execution pipelines
Driver node estimator

3 Practice

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 18 / 46



Theory Execution pipelines

The pipeline concept

Pipeline definition

An execution pipeline is the maximal executor subtree that executes
concurrently.

You can think of a pipeline as the set of executor nodes that will be run
for the pipeline’s root node to produce one tuple.

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 19 / 46



Theory Execution pipelines

Constructing pipelines

I execution plan leaves start new pipelines

I nodes like Sort or Hash start new pipelines

I joins combine the pipelines of their children

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 20 / 46



Theory Execution pipelines

Driver nodes

Driver node definition

Driver nodes are leaf nodes of pipelines, except for nodes in the inner
subtree of a Nested Loops join.

Conceptually, driver nodes are the ones that drive the pipeline, supplying it
with tuples.

Because of that, they are better suited to estimate the progress of a
pipeline than the rest of its nodes.

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 21 / 46



Theory Execution pipelines

Pipeline examples

The same executor tree annotated with pipeline identifiers:

(P0)
IndexScan

(P0)
IndexScan

(P0)
SeqScan

(P0)
NestLoop

(P0)
IndexScan

(P0)
NestLoop

(P0)
NestLoop

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 22 / 46



Theory Execution pipelines

Pipeline examples cont.

A plan with several pipelines:

(P0)
IndexOnlyScan

(P0)
SeqScan

(P1)
IndexScan

(P1)
Hash

(P0)
HashJoin

(P0)
NestLoop

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 23 / 46



Theory Execution pipelines

Pipeline examples cont.

Another example:

(P0)
IndexScan

(P0)
IndexScan

(P0)
MergeJoin

(P0)
SeqScan

(P0)
Material

(P0)
NestLoop

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 24 / 46



Theory Driver node estimator

Outline

1 Problem

2 Theory
Model of work for query execution
Execution pipelines
Driver node estimator

3 Practice

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 25 / 46



Theory Driver node estimator

Driver node hypothesis

Estimating progress of a running pipeline

For pipelines with one driver node that are in progress, we use the driver
node hypothesis, which says that

tuples a pipeline has returned

tuples to be returned
≈ tuples the driver node has returned

tuples the driver node will return

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 26 / 46



Theory Driver node estimator

Unstarted and finished pipelines

Estimating progress of other pipelines

For pipelines that are already finished, we know

tuples returned = tuples to be returned

For pipelines that are not yet started, we use

tuples returned = 0, tuples to be returned = planned estimate

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 27 / 46



Theory Driver node estimator

Final estimator

GetNext() estimator with pipelines

For a query comprising s pipelines, the final estimator definition is

gnm =
sum of tuples already returned for each pipeline

sum of tuples to be returned for each pipeline

gnm =

∑
i∈P1

Ki + ... +
∑
i∈Ps

Ki∑
i∈P1

Ni + ... +
∑
i∈Ps

Ni

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 28 / 46



Practice Implementation

Outline

1 Problem

2 Theory

3 Practice
Implementation
Hurdles
What next?

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 29 / 46



Practice Implementation

Implementation idea

The idea was to make the implementation minimally intrusive with regards
to Postgres code.

1 at executor startup, determine pipelines and driver nodes

2 when asked to estimate the progress

1 walk all pipelines
2 calculate KP and NP for each of them

3 return the sum of KP divided by the sum of NP

4 use the opportunity to draw a graph of the executor tree and
annotate it with progress information for each node

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 30 / 46



Practice Implementation

Calculating pipeline states

Processing a pipeline

k, n = 0;

for node in pipeline {

k += tuples processed(node);

n += tuples estimated(node);

}

if (all(pipeline->driver nodes, FINISHED))

return k, k;

else if (any(pipeline->driver nodes, STARTED))

return k, k * dne(pipeline);

else

return 0, n;

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 31 / 46



Practice Implementation

Calculating pipeline states

Processing a pipeline

k, n = 0;

for node in pipeline {

k += tuples processed(node);

n += tuples estimated(node);

}

if (all(pipeline->driver nodes, FINISHED))

return k, k;

else if (any(pipeline->driver nodes, STARTED))

return k, k * dne(pipeline);

else

return 0, n;

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 31 / 46



Practice Implementation

Calculating pipeline states

Processing a pipeline

k, n = 0;

for node in pipeline {

k += tuples processed(node);

n += tuples estimated(node);

}

if (all(pipeline->driver nodes, FINISHED))

return k, k;

else if (any(pipeline->driver nodes, STARTED))

return k, k * dne(pipeline);

else

return 0, n;

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 31 / 46



Practice Implementation

Calculating pipeline states

Processing a pipeline

k, n = 0;

for node in pipeline {

k += tuples processed(node);

n += tuples estimated(node);

}

if (all(pipeline->driver nodes, FINISHED))

return k, k;

else if (any(pipeline->driver nodes, STARTED))

return k, k * dne(pipeline);

else

return 0, n;

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 31 / 46



Practice Implementation

Communicating with the query backend

I needed a way to get information from a backend running the query

I not trivial, since the backend is busy producing the result

I introduce a custom signal handler based on a patch from Simon Riggs

I on next CHECK FOR INTERRUPTS(), calculate progress and put in
shared memory

I signalling backend can then grab results from shmem

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 32 / 46



Practice Implementation

Changes to core Postgres

From least to most controversial:

I bulk of the logic is implemented as a Postgres extension

I ability to store private data in the main executor structure

I hooks for executor node instrumentation

I a hook for running user code on SIGUSR1

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 33 / 46



Practice Hurdles

Outline

1 Problem

2 Theory

3 Practice
Implementation
Hurdles
What next?

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 34 / 46



Practice Hurdles

Not everything went as smoothly...

I multiple driver nodes in a pipeline

I nodes being executed multiple times

I node with more than two children (e.g. Append)

I subselect, function scans, recursive queries...

I poor planner estimates

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 35 / 46



Practice Hurdles

Some solutions

I for a pipeline with D driver nodes, the estimator is using

K = average amount of tuples returned by driver nodes

N = minimum estimate of tuples to be returned

I for Nested Loops, the estimated tuple counts of inner child nodes are
multiplied by estimated outer child tuple count

I nodes with more than 2 children are simply assumed blocking and
start their own pipeline

I some nodes are not supported at all (for instance Recursive Union)

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 36 / 46



Practice Hurdles

Refining estimates

I the original paper puts a lot of emphasis on refining estimates as the
query progresses

I each node has a lower and an upper bound for its N value
I those bounds are refined as execution progresses:

I Sort or Hash nodes will never increase carditality
I when an outer child of a Nested Loops join outputs more tuples than

expected, recalculate the expected number of loops in the inner subtree
I Merge joins will stop as soon as they finish processing one of their

inputs

I a missing feature for now

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 37 / 46



Practice What next?

Outline

1 Problem

2 Theory

3 Practice
Implementation
Hurdles
What next?

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 38 / 46



Practice What next?

Annoyances

I correctly identifying pipelines and driver nodes (lots of different nodes
types to think about)

I detecting if a pipeline has started or has finished
I annoyingly tricky
I nodes can be executed several times, for example in a Nested Loops

outer tree

I no visibility into a Sort node progress
I important, because Sort nodes are driver nodes

I using shared memory to relay estimates to other backends
I haven’t even considered the security implications yet...

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 39 / 46



Practice What next?

Rescanning nodes

I the executor has a concept of rescanning a node

I some nodes are very cheap to rescan, for example Materialization
nodes

I they will show a large number for tuples returned, but the real work
was just scanning the child node once

I need to consider number of loops manually, since the planner
accounts for them internally and does not expose the total estimated
number of tuples

I not acconuted for in the original paper at all

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 40 / 46



Practice What next?

The “single outer tuple” problem

I a common situation is a Nested Loops scan estimating a single outer
tuple

I if the outer child returns more than one tuple, the entire inner subtree
is rescanned

I arguably a planner failure, but because the outer child can end up
being the only driver node of a large pipeline, estimates are all wrong

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 41 / 46



Practice What next?

“Single output tuple” example

This tree has only one driver node, which leads to imprecision

(P0)
IndexScan

(P0)
IndexScan

(P0)
SeqScan

(P0)
NestLoop

(P0)
IndexScan

(P0)
NestLoop

(P0)
NestLoop

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 42 / 46



Practice What next?

MultiExecProcNode

I some nodes are “special” and don’t follow the GetNext() model
I Hash nodes build the entire hashtable in one go
I Bitmap index scans scan the entire index when building the bitmap

I if they’d be just blocking, it wouldn’t have been a problem

I being outside of GetNext() means no visibility into their progress

I particularily bad when they’re driver nodes

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 43 / 46



Practice What next?

Utility commands

I this model does not allow estimating the progress of utility commands
in any way

I things like COPY, VACUUM, CREATE INDEX, ANALYSE

I a shame, since these are just the kinds of statements that often would
benefit from estimation

I possibly a hybrid approach would work, special-casing utility
statements

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 44 / 46



Practice What next?

Current state

I requires small changes to core Postgres, but some are controversial

I the driver node estimator looks like an interesting metric to use

I could be reimplemented as returning just raw execution data and let
other tools calculate a single progress value

I graphical dumps are more a debugging tool, should probably use
EXPLAIN-ish format and external tools could transform it into images

I need to implement estimate refining

I for the time being, a proof of concept

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 45 / 46



Practice Questions

Questions?

Jan Urbański (Ducksboard) Estimating query progress PGCon 2013 46 / 46


	Problem
	Problem statement
	Qualities of a good estimator

	Theory
	Model of work for query execution
	Execution pipelines
	Driver node estimator

	Practice
	Implementation
	Hurdles
	What next?


