
PostgreSQL 9 High Availability
With Linux-HA

PGCon 2013
Nikhil Sontakke

2

Agenda

• Introduction
• HA considerations
• PostgreSQL HA evolution
• Linux HA – components
• PostgreSQL streaming replication +

Linux HA recipe
• Summary

3

Who am I?

• Nikhil Sontakke

• Architect and Founding member at
StormDB

• Responsible for the HA aspects of the
StormDB product

• PostgreSQL/Postgres-XC community
member/contributor

• Stints earlier at Veritas, EnterpriseDB

4

HA - Definition

• What is High Availability (HA):
• HA is a “concept”
• A percentage of time that a given system is

providing service since it has been deployed
• For example: A system is 99% available if the

downtime is 4 days in a year
• Everyone craves for the five 9s (downtime of

less than 5 minutes in a year – 99.999%)
• HA is NOT designed for high performance
• HA is NOT designed for high throughput (aka

load balancing)

5

HA – Why does it matter?

• Why do we bother with HA:

• Downtime is expensive

• You miss out on earnings due to the downtime

• You bother because your boss might complain ;)

• Users might not return!

6

HA – wish our sysadmin is like this ;)

xkcd.com/705

7

PostgreSQL – HA evolution

• Log Shipping and Point In Time Recovery
• PostgreSQL 8.1
• Base backup of the database
• Write Ahead Logs (WAL) sent to the standby

• Warm Standby
• PostgreSQL 8.2
• Continuously apply WAL on the standby

8

PostgreSQL – HA evolution (contd...)

• HA using Logical Replication
• Trigger/Event based replication systems
• Slony (PG 7.3 onwards), Londiste, Bucardo

• HA using statement based replication
• Pgpool-II (PG 6.4 onwards)
• Intercept SQL queries and send to multiple

servers

9

PostgreSQL – HA evolution (contd...)

• HA using Shared Storage
• Sharing disk array between two servers
• SAN environment needed (very expensive)

• HA using Block-Device replication
• All changes to a filesystem residing on a block

device are replicated to a block device on
another system

• DRBD pretty popular

10

PostgreSQL – HA latest...

• HA using Streaming Replication
• Standby can be a HOT one to serve read only

queries as well
• Synchronous streaming available to have

almost zero lag with the primary

• HA using Multi-master clusters
• Postgres-XC coordinator and datanodes

• All solutions mentioned need an “external” HA
infrastructure to manage failover

11

PostgreSQL – HA not in-built

• HA not in-built/in-core in PostgreSQL

• PostgreSQL provides the means, mechanisms
and building blocks to get a HA system in place

• External monitoring and cluster management
tools needed to come up with a “working” HA
solution

12

PostgreSQL – Streaming Replication
Scenario

Primary Hot Standby 1

Application

IP
1

SRHS

Hot Standby 2SRHS

13

PostgreSQL – Streaming Replication
Scenario

Primary Hot Standby 1

Application

IP
1

SRHS

Hot Standby 2SRHS

14

PostgreSQL – Streaming Replication
Scenario

Primary Hot Standby 1

Application

IP
1

SRHS on RepIP1

Hot Standby 2
SRHS on RepIP1

15

PostgreSQL – Streaming Replication
Scenario

Primary Promote Primary

Application

IP
1

Hot Standby 2

16

PostgreSQL – Streaming Replication
Scenario

Primary Promote Primary

Application

IP
1

Hot Standby 2Move IP1

17

PostgreSQL – Streaming Replication
Scenario

Primary Promote Primary

Application

Hot Standby 2

IP
1

18

PostgreSQL – Streaming Replication
Scenario – Bonus!

Primary New Primary

Application

New Hot Standby 1
IP

1

SRHS o
n

Rep
IP

1

19

PostgreSQL SR – HA requirements

• The Application should be able to connect to the
database on a fixed IP address

• There should be a monitor running on the
Primary and Standby nodes checking for running
PG processes

• The monitor should first try to re-start PG if not
running on the nodes configurable by a failure
count

• In case if the node running the primary goes
down for whatever reason exactly one of the
Standby nodes should be promoted to Primary

20

PostgreSQL SR – HA requirements (contd)

• The IP address should move to the new node
only after it has been promoted to be the new
master

• It will be good to have the surviving standby
connect to the new master and re-start the
replication process

• Obviously all of the above should be done
“automatically” without manual intervention via
the clustering infrastructure :)

21

Introducing Linux-HA!

• The Linux-HA project is a high-availability
clustering solution for Linux, FreeBSD, Solaris, etc.

• It has been around since quite a while (1999) and
is increasingly gaining traction in Linux
environments

• Suse Linux Enterprise Server (SLES) uses it as
default clustering layer. RedHat also warming up to
it in recent releases. Rpms available for Fedora,
RHEL, Ubuntu etal

22

Linux-HA – Latest Version Components

• Messaging Layer via Heartbeat/Corosync:
• Node membership and notifications of nodes

joining/leaving
• Messaging between the nodes
• A quorum system

• Cluster resource manager (crm) via Pacemaker:
• Stores the configuration of the cluster
• Uses the messaging layer to achieve maximum

availability of your resources
• Extensible: Anything that can be scripted can be

managed by Pacemaker

23

Linux-HA – Latest Version Components

• Cluster Glue
• Stuff that is neither cluster messaging

(Corosync) nor CRM (Pacemaker)
• Local node resource manager to interface with

resource agents
• STONITH daemon to provide fencing

• Resource Agents
• Agent to manage a cluster resource
• Support operations like start, stop, monitor,

promote, demote etc.
• Readymade agents available to manage

resources like Apache, PostgreSQL, drbd etc

24

Linux-HA – The BIG picture (Whoops!)

25

Linux-HA – PostgreSQL resource agent

• The latest PostgreSQL resource agent is available
at:

https://raw.github.com/ClusterLabs/resource-
agents/master/heartbeat/pgsql
CAUTION: this is a bleeding edge, BETA agent. Used here
JUST as an example for the talk. YMMV!

• It follows the OCF (Open Cluster Framework)
specifications

• The latest version is a Master/Slave resource
agent supporting streaming replication (added by
Takatoshi Matsuo)

26

Linux-HA – Warning! Eyes will HURT ;) :P

https://i.chzbgr.com/maxW500/6591864832/hC8B27BD6/

27

Linux-HA – Planning

• Create data directory on one node
• Setup the postgresql.conf, pg_hba.conf

configuration files for replication
• wal_level = hot_standby
• max_wal_senders, wal_keep_segments
• hot_standby = on, etc..

• Do a basebackup onto the other node
• No need to create recovery.conf file for the

Standby. The RA creates it itself
• Check https://github.com/t-matsuo/resource-

agents/wiki/Resource-Agent-for-PostgreSQL-9.1-
streaming-replication for inspiration

28

Linux-HA – Resource definitions

• The Linux HA configuration can be specified using
the crm cli
• crm configure edit (as root)

• Define a master public IP resource to which
applications will connect to:

primitive vip-master ocf:heartbeat:IPaddr2 \

params ip="192.168.168.108" nic="eth0"
cidr_netmask="24" \

op start interval="0s" timeout="60s" on-fail="stop" \

op monitor interval="10s" timeout="60s" on-fail="restart" \

op stop interval="0s" timeout="60s" on-fail="block"

29

Linux-HA – Resource definitions (contd...)

• Define a replication IP resource to which slaves
will connect to:

primitive vip-rep ocf:heartbeat:IPaddr2 \

params ip="192.168.168.109" nic="eth0"
cidr_netmask="24" \

op start interval="0s" timeout="60s" on-fail="stop" \

op monitor interval="10s" timeout="60s" on-fail="restart" \

op stop interval="0s" timeout="60s" on-fail="block"

• You can create an additional IP resource to allow reads to
be queried from Standby nodes as well

30

Linux-HA – Resource definitions (contd...)

• The IP used for replication will shift along with the
master IP whenever a standby is promoted.

• This allows other existing standbys to re-connect
on this replication IP to the new Master.

• We use a “group” to keep them together:

group master-group vip-master vip-rep \

 meta ordered="false"

31

Linux-HA – Resource definitions (contd...)

• Define the resource to control the PostgreSQL servers on
the node:
primitive pgsql ocf:heartbeat:pgsql \

params repuser="stormdb" pgdba="stormdb" pgport="5472"
pgctl="/opt/PostgreSQL/bin/pg_ctl" psql="/opt/PostgreSQL/bin/psql"
pgdata="/data/PostgreSQL/data/" start_opt="-p 5472"
rep_mode="sync" node_list="stormtest1 stormtest3"
master_ip="192.168.168.109" stop_escalate="0" \

op start interval="0s" timeout="60s" on-fail="restart" \

op monitor interval="7s" timeout="60s" on-fail="restart" \

op monitor interval="2s" role="Master" timeout="60s" on-
fail="restart" \

op promote interval="0s" timeout="60s" on-fail="restart" \

op demote interval="0s" timeout="60s" on-fail="stop" \

op stop interval="0s" timeout="60s" on-fail="block" \

op notify interval="0s" timeout="60s"

32

Linux-HA – Resource definitions (contd...)

• Create a master/slave configuration using the just
specified pgsql resource

ms msPostgresql pgsql \

meta \

master-max="1" \

master-node-max="1" \

clone-max="2" \

clone-node-max="1" \

notify="true"

33

Linux-HA – Resource definitions (contd...)

• The “group” of the IP resources should always co-
locate with the Master. Specify that

colocation rsc_colocation-1 \

inf: master-group msPostgresql:Master

• The IP addresses should be started ONLY after a MASTER
has been chosen properly. We specify the same via
resource ordering:

 order rsc_order-1 0: msPostgresql:promote master-
group:start symmetrical=false

34

Linux-HA – Resource definitions (contd...)

• Done!!
• Save the configuration by quitting the 'crm

configure edit' window
• Check that there are no syntax or other errors

while quitting
• Now take a deep breath, wipe off the sweat of your

brow and invoke the command to start the cluster:

crm resource start msPostgresql

35

Linux-HA - Results

• Check if the HA cluster is up and running properly
by issuing “crm_mon -1r -A”

36

Linux-HA – Test!!

• Test, Test, TEST!
• Pull out network cables
• Power off nodes
• Use iptables to cause networking split brains

37

Linux-HA – Test Failover

• Stop the “corosync” service on one node. Check
on the other node “crm_mon -1r -A”:

It works!

38

PostgreSQL 9.x + Linux-HA == WIN!

• PostgreSQL 9.x provides the super cool streaming
replication feature

• Linux HA has all the bells and whistles to provide a
 comprehensive HA infrastructure

• This gives you a full blown HA solution in place
using purely awesome Open Source components

• Sure brings you closer to the 99.999% desired
availability!

39

Further reading

• http://www.linux-ha.org (Linux HA homepage)

• http://clusterlabs.org/ (for Pacemaker)

• http://corosync.github.io/corosync/ (Corosync)

• http://www.linux-ha.org/wiki/Resource_Agents
(various supported resource agents)

• https://github.com/t-matsuo/resource-
agents/wiki/Resource-Agent-for-PostgreSQL-9.1-
streaming-replication

http://www.linux-ha.org/
http://clusterlabs.org/
http://corosync.github.io/corosync/
http://www.linux-ha.org/wiki/Resource_Agents

40

Questions?

Questions?!

Thanks,
@nikkhils

nikhils@stormdb.com

	EnterpriseDB An Overview
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

