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Who am I?

• Nikhil Sontakke

• Architect and Founding member at 
StormDB

• Responsible for the HA aspects of the 
StormDB product

• PostgreSQL/Postgres-XC community 
member/contributor

• Stints earlier at Veritas, EnterpriseDB
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HA - Definition

• What is High Availability (HA):
• HA is a “concept”
• A percentage of time that a given system is 

providing service since it has been deployed
• For example: A system is 99% available if the 

downtime is 4 days in a year
• Everyone craves for the five 9s (downtime of 

less than 5 minutes in a year – 99.999%)
• HA is NOT designed for high performance
• HA is NOT designed for high throughput (aka 

load balancing)
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HA – Why does it matter?

• Why do we bother with HA:

• Downtime is expensive

• You miss out on earnings due to the downtime

• You bother because your boss might complain ;)

• Users might not return!
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HA – wish our sysadmin is like this ;)

xkcd.com/705
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PostgreSQL – HA evolution

• Log Shipping and Point In Time Recovery
• PostgreSQL 8.1
• Base backup of the database
• Write Ahead Logs (WAL) sent to the standby

• Warm Standby
• PostgreSQL 8.2
• Continuously apply WAL on the standby
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PostgreSQL – HA evolution (contd...)

• HA using Logical Replication
• Trigger/Event based replication systems
• Slony (PG 7.3 onwards), Londiste, Bucardo

• HA using statement based replication
• Pgpool-II (PG 6.4 onwards)
• Intercept SQL queries and send to multiple 

servers
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PostgreSQL – HA evolution (contd...)

• HA using Shared Storage
• Sharing disk array between two servers
• SAN environment needed (very expensive)

• HA using Block-Device replication
• All changes to a filesystem residing on a block 

device are replicated to a block device on 
another system

• DRBD pretty popular
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PostgreSQL – HA latest...

• HA using Streaming Replication
• Standby can be a HOT one to serve read only 

queries as well
• Synchronous streaming available to have 

almost zero lag with the primary

• HA using Multi-master clusters 
• Postgres-XC coordinator and datanodes

• All solutions mentioned need an “external” HA 
infrastructure to manage failover



11

PostgreSQL – HA not in-built

• HA not in-built/in-core in PostgreSQL

• PostgreSQL provides the means, mechanisms 
and building blocks to get a HA system in place

• External monitoring and cluster management 
tools needed to come up with a “working” HA 
solution
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PostgreSQL – Streaming Replication 
Scenario
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PostgreSQL – Streaming Replication 
Scenario – Bonus!
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PostgreSQL SR – HA requirements

• The Application should be able to connect to the 
database on a fixed IP address

• There should be a monitor running on the 
Primary and Standby nodes checking for running 
PG processes

• The monitor should first try to re-start PG if not 
running on the nodes configurable by a failure 
count

• In case if the node running the primary goes 
down for whatever reason exactly one of the 
Standby nodes should be promoted to Primary 
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PostgreSQL SR – HA requirements (contd)

• The IP address should move to the new node 
only after it has been promoted to be the new 
master

• It will be good to have the surviving standby 
connect to the new master and re-start the 
replication process

• Obviously all of the above should be done 
“automatically” without manual intervention via 
the clustering infrastructure :)
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Introducing Linux-HA!

• The Linux-HA project is a high-availability 
clustering solution for Linux, FreeBSD, Solaris, etc.

• It has been around since quite a while (1999) and 
is increasingly gaining traction in Linux 
environments 

• Suse Linux Enterprise Server (SLES) uses it as 
default clustering layer. RedHat also warming up to 
it in recent releases. Rpms available for Fedora, 
RHEL, Ubuntu etal



22

Linux-HA – Latest Version Components 

• Messaging Layer via Heartbeat/Corosync: 
• Node membership and notifications of nodes 

joining/leaving
• Messaging between the nodes
• A quorum system

• Cluster resource manager (crm) via Pacemaker:
• Stores the configuration of the cluster
• Uses the messaging layer to achieve maximum 

availability of your resources
• Extensible: Anything that can be scripted can be 

managed by Pacemaker
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Linux-HA – Latest Version Components 

• Cluster Glue
• Stuff that is neither cluster messaging 

(Corosync) nor CRM (Pacemaker)
• Local node resource manager to interface with 

resource agents
• STONITH daemon to provide fencing

• Resource Agents
• Agent to manage a cluster resource
• Support operations like start, stop, monitor, 

promote, demote etc.
• Readymade agents available to manage 

resources like Apache, PostgreSQL, drbd etc 
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Linux-HA – The BIG picture (Whoops!) 
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Linux-HA – PostgreSQL resource agent 

• The latest PostgreSQL resource agent is available 
at:

https://raw.github.com/ClusterLabs/resource-
agents/master/heartbeat/pgsql
CAUTION: this is a bleeding edge, BETA agent. Used here 
JUST as an example for the talk. YMMV!

• It follows the OCF (Open Cluster Framework) 
specifications

• The latest version is a Master/Slave resource 
agent supporting streaming replication (added by 
Takatoshi Matsuo)
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Linux-HA – Warning! Eyes will HURT ;) :P 

https://i.chzbgr.com/maxW500/6591864832/hC8B27BD6/
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Linux-HA – Planning 

• Create data directory on one node
• Setup the postgresql.conf, pg_hba.conf 

configuration files for replication
• wal_level = hot_standby
• max_wal_senders, wal_keep_segments
• hot_standby = on, etc..

• Do a basebackup onto the other node
• No need to create recovery.conf file for the 

Standby. The RA creates it itself
• Check https://github.com/t-matsuo/resource-

agents/wiki/Resource-Agent-for-PostgreSQL-9.1-
streaming-replication for inspiration
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Linux-HA – Resource definitions  

• The Linux HA configuration can be specified using 
the crm cli
• crm configure edit (as root)

• Define a master public IP resource to which 
applications will connect to:

primitive vip-master ocf:heartbeat:IPaddr2 \

params ip="192.168.168.108" nic="eth0" 
cidr_netmask="24" \

op start interval="0s" timeout="60s" on-fail="stop" \

op monitor interval="10s" timeout="60s" on-fail="restart" \

op stop interval="0s" timeout="60s" on-fail="block"
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Linux-HA – Resource definitions (contd...)  

• Define a replication IP resource to which slaves 
will connect to:

primitive vip-rep ocf:heartbeat:IPaddr2 \

params ip="192.168.168.109" nic="eth0" 
cidr_netmask="24" \

op start interval="0s" timeout="60s" on-fail="stop" \

op monitor interval="10s" timeout="60s" on-fail="restart" \

op stop interval="0s" timeout="60s" on-fail="block"

• You can create an additional IP resource to allow reads to 
be queried from Standby nodes as well
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Linux-HA – Resource definitions (contd...)  

• The IP used for replication will shift along with the 
master IP whenever a standby is promoted. 

• This allows other existing standbys to re-connect 
on this replication IP to the new Master.

• We use a “group” to keep them together:

group master-group vip-master vip-rep \

        meta ordered="false"
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Linux-HA – Resource definitions (contd...)  

• Define the resource to control the PostgreSQL servers on 
the node:
primitive pgsql ocf:heartbeat:pgsql \

params repuser="stormdb" pgdba="stormdb" pgport="5472" 
pgctl="/opt/PostgreSQL/bin/pg_ctl" psql="/opt/PostgreSQL/bin/psql" 
pgdata="/data/PostgreSQL/data/" start_opt="-p 5472" 
rep_mode="sync" node_list="stormtest1 stormtest3" 
master_ip="192.168.168.109" stop_escalate="0" \

op start interval="0s" timeout="60s" on-fail="restart" \

op monitor interval="7s" timeout="60s" on-fail="restart" \

op monitor interval="2s" role="Master" timeout="60s" on-
fail="restart" \

op promote interval="0s" timeout="60s" on-fail="restart" \

op demote interval="0s" timeout="60s" on-fail="stop" \

op stop interval="0s" timeout="60s" on-fail="block" \

op notify interval="0s" timeout="60s"
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Linux-HA – Resource definitions (contd...)  

• Create a master/slave configuration using the just 
specified pgsql resource

ms msPostgresql pgsql \

meta \

master-max="1" \

master-node-max="1" \

clone-max="2" \

clone-node-max="1" \

notify="true"
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Linux-HA – Resource definitions (contd...)  

• The “group” of the IP resources should always co-
locate with the Master. Specify that

colocation rsc_colocation-1 \

inf: master-group  msPostgresql:Master

• The IP addresses should be started ONLY after a MASTER 
has been chosen properly. We specify the same via 
resource ordering:

  order rsc_order-1 0: msPostgresql:promote master-
group:start symmetrical=false
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Linux-HA – Resource definitions (contd...)  

• Done!!
• Save the configuration by quitting the 'crm 

configure edit' window
• Check that there are no syntax or other errors 

while quitting
• Now take a deep breath, wipe off the sweat of your 

brow and invoke the command to start the cluster:

crm resource start msPostgresql
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Linux-HA - Results  

• Check if the HA cluster is up and running properly 
by issuing “crm_mon -1r -A”
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Linux-HA – Test!!  

• Test, Test, TEST!
• Pull out network cables
• Power off nodes
• Use iptables to cause networking split brains
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Linux-HA – Test Failover  

• Stop the “corosync” service on one node. Check 
on the other node “crm_mon -1r -A”:

It works!



38

PostgreSQL 9.x + Linux-HA == WIN! 

• PostgreSQL 9.x provides the super cool streaming 
replication feature

• Linux HA has all the bells and whistles to provide a 
 comprehensive HA infrastructure

• This gives you a full blown HA solution in place 
using purely awesome Open Source components

• Sure brings you closer to the 99.999% desired 
availability!
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Further reading 

• http://www.linux-ha.org (Linux HA homepage)

• http://clusterlabs.org/ (for Pacemaker)

• http://corosync.github.io/corosync/ (Corosync)

• http://www.linux-ha.org/wiki/Resource_Agents 
(various supported resource agents)

• https://github.com/t-matsuo/resource-
agents/wiki/Resource-Agent-for-PostgreSQL-9.1-
streaming-replication

http://www.linux-ha.org/
http://clusterlabs.org/
http://corosync.github.io/corosync/
http://www.linux-ha.org/wiki/Resource_Agents
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Questions? 

Questions?!

Thanks,
@nikkhils

nikhils@stormdb.com
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