Moving Day:
Migrating your Big ata

- fromAtoB

Laura Thomson
laura@mozilla.com

PGCon 2012

Overview

e What is Socorro?

e The problem

e Planning

e Build out and testing
e Troubleshooting

e Moving Day

e Aftermath

w
Socorro

Very Large Array at Socorro, New Mexico, USA. Photo taken by Hajor, 08.Aug.2004. Released under cc.by.sa

and/or GFDL. Source: http://en.wikipedia.org/wiki/File:USA.NM.VeryLargeArray.02.jpg

We're Sorry
Firefox had a problem and crashed. We'll try to restore
your tabs and windows when it restarts.

To help us diagnose and fix the problem, you can send us
a crash report.
sTeII Mozilla about this crash so they can fix it

|Add a comment (comments are publicly visible)

[liInclude the address of the page | was on
S Email me when more information is available

lars@mozilla.com
Your crash report will be submitted before you quit or
restart.

(Quit Firefox) (Restart Firefox)

806

Crash Data for Firefox o
- Crash Data for Firefox L+l
) & https://crash-stats.mozilla.com/products Firefox c) Q)(a)
O d d 2P0 Find Crash ID or Signature
od Firefox : Current Versions ¢ po! Overview B

Firefox Crash Data 3 days 14 days

Crashes per 100 Active Daily Users

way 1t Nay 12 vay 13 vay 14 May 15 May 16 vay 17

Crash Reports

Firefox 15.0a1 Firefox 14.0a2 Firefox 13.003 Firefox 12.0

[-XeXo) Top Crashers for Firefox 12.0 o
& Top Crashers for Firefox 12.0 +|

@) @ hitps://crash-stats.mozilla.com/topcrasher/byversion| Firefox/12.0/7

© mozilla crash reports

product: ([[ETEENEEED GTCHEEEEEEE) = Report Advanced Search
Top Crashers for Firefox 12.0
Top 300 Crashing Signatures. 2012-05-11 through 2012-05-18.
por 70.19% of all this period. l-axis, having Count (Number the left X axis the right X axis.
oo (A D Pwn o e (1 (3 @)W (% os QN Wnew | Uk | Masosx
Rank. % Diff ¢ Signature 4 Count ¢ Win ¢ Mac ¢ Lin ¢ Ver ¢ FirstAppearance ¢ BugzillaiDs 4 Correlation &
1 1275% 048% hangl @O s s 0 0 3 20110101 ey s
Show More
2 am% |03 | SAsEneConsmmen everSConer sSONr O e o o0 o |w |mmo e s s
Show More
3 o7e% 001 Ewery. " O e o o o 1 zmmor 743221, 816117, 722083, [
Show More
 2em oem o ——— O mm ww o o o | o 2o g %
o
s 200% 00T% hanal SEM eglbat @O 206 208 0 o o7 2otmoor 30253, 694874, o)
Show More
6 2% 0NN | mmitEneMonTuSConer o Sacrne vad J5-Voue" oo @ we we o o & amen 10000 1T T
Show More
7 i 0o% | machawmsns O wm ww w7 e e e s e
Show More
pom— S——— : ! ¢
s 101% 00#% Avens:fingize(JSContext s gc-AlocKing, unsigned nt, b 0] e 740 o o 2 2011206 22101, 702831 Loading né
Somsion
o oo% 005% . unsioneg o unsioned o) O ms ms o o s | 20010 40315 7148 o)
‘Show More
R —— T —r—" O e em 0 0w o 296, 537200 .

Typical use cases

e What are the most common crashes for a product/version/
channel?

e What new crashes / regressions do we see emerging? What’s
the cause of an emergent crash?

e How crashy is one build compared to another?

e What correlations do we see with a particular crash?

What else can we do?

e Does one build have more (null signature) crashes than other
builds?

e Analyze differences between Flash versions x and y crashes
e Detect duplicate crashes

e Detect explosive crashes

e Find “frankeninstalls”

e Email victims of a particular crash

e Ad hoc reporting for e.g. tracking down chemspill bugs

=&
=S

-

| Monitor l r
iddlewal \
hoopsnal

—E—

—_—

“Socorro has a lot of moving parts”

“| prefer to think of them as dancing parts”

Basic architecture (simplified)

@

Collector > Crashmover
— ?
c

HBase

Middleware

OOOOOOOO

' .
PostgreSQL

‘ Webapp |

Firehose engineering

At peak we receive 2300 crashes per minute

2.5 million per day

Median crash size 150k, max size 20MB (reject bigger)
e Android crashes a bit bigger (~200k median)

~500GB stored in PostgreSQL - metadata + generated reports

~110TB stored in HDFS (3x replication, ~40TB of HBase data)
- raw reports + processed reports

Implementation scale

e > 120 physical boxes (not cloud)

e -8 developers + DBAs + sysadmin team + QA + Hadoop ops/
analysts

e Deploy approximately weekly but could do continuous if
needed

Lifetime of a crash

Breakpad submits raw crash via POST (metadata json +
minidump)

Collected to disk by collector (web.py WSGI app)

Moved to HBase by crashmover

Noticed in HBase by monitor and assigned for processing

Processing

Processor spins off minidump stackwalk (MDSW)

e MDSW re-unites raw crash with symbols to generate a stack

Processor generates a signature and pulls out other data

Processor writes processed crash back to HBase and
metadata to PostgreSQL

Back end processing

Large number of cron jobs, e.g.:

e Calculate aggregates: Top crashers by signature, crashes/
100ADU/build

e Process incoming builds from ftp server
e Match known crashes to bugzilla bugs
e Duplicate detection

e Generate extracts (CSV) for further analysis (in CouchDB,
f.e.)

Middleware

e All data access through REST API (new)

e Enable other apps against the data platform and allow the
core team to rewrite webapp more easily

e In an upcoming version each component will have its own API
for status and health checks

Webapp

Hardest part is sometimes how to visualize the data

Example: nightly builds, moving to reporting in build time
rather than clock time

e Code a bit crufty: rewriting in 2012
Currently KohanaPHP, will be Django (playdoh)

Other implementation details

e Python 2.6 mostly

e PostgreSQL9.1, stored procs in pgpl/sql
e memcache for the webapp

e Thrift for HBase access

e HBase (CDH3)

e Rolling out ElasticSearch for fulltext indexing of crashes

The problem

The problem

e Approaching capacity (> 85% of storage), causing instability
and wanted to store more

e No more power in datacenter and wanted to get out of that
datacenter anyway

e Question: How do you move >40TB of data in multiple data

stores to a whole new infrastructure in another state...with no
downtime?

Complication: Fragility

e Ongoing stability problems with HBase, and when it went
down, everything went with it

e Releases were nightmares, requiring manual upgrades of
multiple boxes, editing of config files, and manual QA

e Troubleshooting done via remote (awful)

e If we were going to do it over, we were going to do it right.

Analyzing uptime

e Not all parts of a system have the same uptime requirement

e As long as we had zero downtime on data collection, the rest
could be offline for a short period (hours, not days).

e This reduces the problem to a tractable one:

e Collect data to temporary storage (disk) during the
migration, and recommence processing once migration
complete

e Rewrote crash storage to use a pluggable primary/secondary

Moving data: PostgreSQL

e Theoretically easy!
e Only about 300GB at the time
e Sync from SJC->PHX

e Done in a maintenance window beforehand to reduce
downtime on the day, and repeated on migration day

e At this stage we did *not* have replication set up in the old
location

Moving data: HBase

e Originally intended to use distcp, an HBase sync utility

e Couldn’t use this on a running system, and we couldn’t
afford the downtime needed (24 hours+)

e Solution: Wrote a dirty copy tool: copy data while running
and then use distcp to reach consistency

Planning tools

e Bugzilla for tasks

Pre-flight checklist and in-flight checklist to track tasks

e Read Atul Gawande’s The Checklist Manifesto
Rollback plan

e Failure scenarios, go/no-go points

e Rehearsals, rehearsals, rehearsals

Build out

Problems with the old system

Legacy hardware

Improperly managed code

e Each server was different

e No configuration management

e Shared resources with other webapps

e Vital daemons were started with “nohup ./startDaemon &”

e Insufficient monitoring

e One sysadmin - rest of team and developers had no insight into production

e No automated testing

Configuration Management

e New rule: if it wasn’t checked in and managed by Puppet, it
wasn’t going on the new servers

e No local configuration/installation of anything
e Daemons got init scripts and proper nagios plugins
e Application configuration done centrally in one place

e Staging application matches production

Packages for production

e 3rd party libraries and packages pulled in upstream

e IT doesn’t need to know/care how a developer develops.
What goes into production is a tested, polished package

e Packages for production are built and tested by Jenkins the
same way every time

e Local patches aren’t allowed. A patch to production means a
patch to the source upstream, a patch to stage and a proper
rollout to production

e Every package is fully tested in a staging environment

Load Testing

e Used a small portion (40 nodes) of a 512-node Seamicro
cluster

e Simulated real traffic by submitting crashes from the test
cluster

e Tested system as a whole, under “real” production load

Troubleshooting

e New data center, new load balancers, new challenges
e Tested and tuned various configurations

e Network misconfigurations reduced performance: discovered
and resolved in smoke testing

Migration day

e Flew the team in

e Migration day checklist: http://tinyurl.com/migrationday

e Went remarkably smoothly due largely to good co-operation
between teams

Aftermath

e Backfilling the data collected during the outage window
turned out to be tricky for several reasons:

e Network flow issues from SJC -> PHX

e Old submitter in the old datacenter: retroactively
upgraded the code to the new multithreaded version to

solve that

e Outage in our external ADU data (Vertica failure) the day
after made it hard to be sure the data “looked right”

Postmortem

e Postmortem to learn what we did right and wrong

e (Really important to do this, even - especially? - when things
go well)

Everything is open (source)

Site: https://crash-stats.mozilla.com

Fork: https://github.com/mozilla/socorro

Read/file/fix bugs: https://bugzilla.mozilla.org/

Docs: http://www.readthedocs.org/docs/socorro

Mailing list: https://lists.mozilla.org/listinfo/tools-socorro

Join us in IRC: irc.mozilla.org #breakpad and #it

Hiring: http://mozilla.org/careers

Questions?

