
Moving Day:
Migrating your Big Data
from A to B
Laura Thomson
laura@mozilla.com

PGCon 2012

Overview

• What is Socorro?

• The problem

• Planning

• Build out and testing

• Troubleshooting

• Moving Day

• Aftermath

Socorro

Very Large Array at Socorro, New Mexico, USA. Photo taken by Hajor, 08.Aug.2004. Released under cc.by.sa
and/or GFDL. Source: http://en.wikipedia.org/wiki/File:USA.NM.VeryLargeArray.02.jpg

Typical use cases

• What are the most common crashes for a product/version/
channel?

• What new crashes / regressions do we see emerging? What’s
the cause of an emergent crash?

• How crashy is one build compared to another?

• What correlations do we see with a particular crash?

What else can we do?

• Does one build have more (null signature) crashes than other
builds?

• Analyze differences between Flash versions x and y crashes

• Detect duplicate crashes

• Detect explosive crashes

• Find “frankeninstalls”

• Email victims of a particular crash

• Ad hoc reporting for e.g. tracking down chemspill bugs

“Socorro has a lot of moving parts”

...

“I prefer to think of them as dancing parts”

Collector Crashmover

HBase Monitor

PostgreSQL ProcessorMiddleware

Webapp

cronjobs

Basic architecture (simplified)

Firehose engineering

• At peak we receive 2300 crashes per minute

• 2.5 million per day

• Median crash size 150k, max size 20MB (reject bigger)

• Android crashes a bit bigger (~200k median)

• ~500GB stored in PostgreSQL - metadata + generated reports

• ~110TB stored in HDFS (3x replication, ~40TB of HBase data)
- raw reports + processed reports

Implementation scale

• > 120 physical boxes (not cloud)

• ~8 developers + DBAs + sysadmin team + QA + Hadoop ops/
analysts

• Deploy approximately weekly but could do continuous if
needed

Lifetime of a crash

• Breakpad submits raw crash via POST (metadata json +
minidump)

• Collected to disk by collector (web.py WSGI app)

• Moved to HBase by crashmover

• Noticed in HBase by monitor and assigned for processing

Processing

• Processor spins off minidump stackwalk (MDSW)

• MDSW re-unites raw crash with symbols to generate a stack

• Processor generates a signature and pulls out other data

• Processor writes processed crash back to HBase and
metadata to PostgreSQL

Back end processing

Large number of cron jobs, e.g.:

• Calculate aggregates: Top crashers by signature, crashes/
100ADU/build

• Process incoming builds from ftp server

• Match known crashes to bugzilla bugs

• Duplicate detection

• Generate extracts (CSV) for further analysis (in CouchDB,
f.e.)

Middleware

• All data access through REST API (new)

• Enable other apps against the data platform and allow the
core team to rewrite webapp more easily

• In an upcoming version each component will have its own API
for status and health checks

Webapp

• Hardest part is sometimes how to visualize the data

• Example: nightly builds, moving to reporting in build time
rather than clock time

• Code a bit crufty: rewriting in 2012

• Currently KohanaPHP, will be Django (playdoh)

Other implementation details

• Python 2.6 mostly

• PostgreSQL9.1, stored procs in pgpl/sql

• memcache for the webapp

• Thrift for HBase access

• HBase (CDH3)

• Rolling out ElasticSearch for fulltext indexing of crashes

The problem

The problem

• Approaching capacity (> 85% of storage), causing instability
and wanted to store more

• No more power in datacenter and wanted to get out of that
datacenter anyway

• Question: How do you move >40TB of data in multiple data
stores to a whole new infrastructure in another state...with no
downtime?

Complication: Fragility

• Ongoing stability problems with HBase, and when it went
down, everything went with it

• Releases were nightmares, requiring manual upgrades of
multiple boxes, editing of config files, and manual QA

• Troubleshooting done via remote (awful)

• If we were going to do it over, we were going to do it right.

Analyzing uptime

• Not all parts of a system have the same uptime requirement

• As long as we had zero downtime on data collection, the rest
could be offline for a short period (hours, not days).

• This reduces the problem to a tractable one:

• Collect data to temporary storage (disk) during the
migration, and recommence processing once migration
complete

• Rewrote crash storage to use a pluggable primary/secondary

Moving data: PostgreSQL

• Theoretically easy!

• Only about 300GB at the time

• Sync from SJC->PHX

• Done in a maintenance window beforehand to reduce
downtime on the day, and repeated on migration day

• At this stage we did *not* have replication set up in the old
location

Moving data: HBase

• Originally intended to use distcp, an HBase sync utility

• Couldn’t use this on a running system, and we couldn’t
afford the downtime needed (24 hours+)

• Solution: Wrote a dirty copy tool: copy data while running
and then use distcp to reach consistency

Planning tools

• Bugzilla for tasks

• Pre-flight checklist and in-flight checklist to track tasks

• Read Atul Gawande’s The Checklist Manifesto

• Rollback plan

• Failure scenarios, go/no-go points

• Rehearsals, rehearsals, rehearsals

Build out

Problems with the old system
• Legacy hardware

• Improperly managed code

• Each server was different

• No configuration management

• Shared resources with other webapps

• Vital daemons were started with “nohup ./startDaemon &”

• Insufficient monitoring

• One sysadmin - rest of team and developers had no insight into production

• No automated testing

Configuration Management

• New rule: if it wasn’t checked in and managed by Puppet, it
wasn’t going on the new servers

• No local configuration/installation of anything

• Daemons got init scripts and proper nagios plugins

• Application configuration done centrally in one place

• Staging application matches production

Packages for production

• 3rd party libraries and packages pulled in upstream

• IT doesn’t need to know/care how a developer develops.
What goes into production is a tested, polished package

• Packages for production are built and tested by Jenkins the
same way every time

• Local patches aren’t allowed. A patch to production means a
patch to the source upstream, a patch to stage and a proper
rollout to production

• Every package is fully tested in a staging environment

Load Testing

• Used a small portion (40 nodes) of a 512-node Seamicro
cluster

• Simulated real traffic by submitting crashes from the test
cluster

• Tested system as a whole, under “real” production load

Troubleshooting

• New data center, new load balancers, new challenges

• Tested and tuned various configurations

• Network misconfigurations reduced performance: discovered
and resolved in smoke testing

Migration day

• Flew the team in

• Migration day checklist: http://tinyurl.com/migrationday

• Went remarkably smoothly due largely to good co-operation
between teams

Aftermath

• Backfilling the data collected during the outage window
turned out to be tricky for several reasons:

• Network flow issues from SJC -> PHX

• Old submitter in the old datacenter: retroactively
upgraded the code to the new multithreaded version to
solve that

• Outage in our external ADU data (Vertica failure) the day
after made it hard to be sure the data “looked right”

• Postmortem to learn what we did right and wrong

• (Really important to do this, even - especially? - when things
go well)

Postmortem

Everything is open (source)

Site: https://crash-stats.mozilla.com

Fork: https://github.com/mozilla/socorro

Read/file/fix bugs: https://bugzilla.mozilla.org/

Docs: http://www.readthedocs.org/docs/socorro

Mailing list: https://lists.mozilla.org/listinfo/tools-socorro

Join us in IRC: irc.mozilla.org #breakpad and #it

Hiring: http://mozilla.org/careers

Questions?

