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Socorro

Very Large Array at Socorro, New Mexico, USA. Photo taken by Hajor, 08.Aug.2004. Released under cc.by.sa

and/or GFDL. Source: http://en.wikipedia.org/wiki/File:USA.NM.VeryLargeArray.02.jpg




We're Sorry
Firefox had a problem and crashed. We'll try to restore
your tabs and windows when it restarts.

To help us diagnose and fix the problem, you can send us
a crash report.
sTeII Mozilla about this crash so they can fix it

|Add a comment (comments are publicly visible)

[liInclude the address of the page | was on
S Email me when more information is available

lars@mozilla.com
Your crash report will be submitted before you quit or
restart.

(Quit Firefox ) (Restart Firefox )
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Typical use cases

e What are the most common crashes for a product/version/
channel?

e What new crashes / regressions do we see emerging? What’s
the cause of an emergent crash?

e How crashy is one build compared to another?

e What correlations do we see with a particular crash?




What else can we do?

e Does one build have more (null signature) crashes than other
builds?

e Analyze differences between Flash versions x and y crashes
e Detect duplicate crashes

e Detect explosive crashes

e Find “frankeninstalls”

e Email victims of a particular crash

e Ad hoc reporting for e.g. tracking down chemspill bugs
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“Socorro has a lot of moving parts”

“| prefer to think of them as dancing parts”




Basic architecture (simplified)

@

Collector > Crashmover
— ?
c

HBase

Middleware

OOOOOOOO

' .
PostgreSQL

‘ Webapp |




Firehose engineering

At peak we receive 2300 crashes per minute

2.5 million per day

Median crash size 150k, max size 20MB (reject bigger)
e Android crashes a bit bigger (~200k median)

~500GB stored in PostgreSQL - metadata + generated reports

~110TB stored in HDFS (3x replication, ~40TB of HBase data)
- raw reports + processed reports




Implementation scale

e > 120 physical boxes (not cloud)

e -8 developers + DBAs + sysadmin team + QA + Hadoop ops/
analysts

e Deploy approximately weekly but could do continuous if
needed




Lifetime of a crash

Breakpad submits raw crash via POST (metadata json +
minidump)

Collected to disk by collector (web.py WSGI app)

Moved to HBase by crashmover

Noticed in HBase by monitor and assigned for processing




Processing

Processor spins off minidump stackwalk (MDSW)

e MDSW re-unites raw crash with symbols to generate a stack

Processor generates a signature and pulls out other data

Processor writes processed crash back to HBase and
metadata to PostgreSQL




Back end processing

Large number of cron jobs, e.g.:

e Calculate aggregates: Top crashers by signature, crashes/
100ADU/build

e Process incoming builds from ftp server
e Match known crashes to bugzilla bugs
e Duplicate detection

e Generate extracts (CSV) for further analysis (in CouchDB,
f.e.)




Middleware

e All data access through REST API (new)

e Enable other apps against the data platform and allow the
core team to rewrite webapp more easily

e In an upcoming version each component will have its own API
for status and health checks




Webapp

Hardest part is sometimes how to visualize the data

Example: nightly builds, moving to reporting in build time
rather than clock time

e Code a bit crufty: rewriting in 2012
Currently KohanaPHP, will be Django (playdoh)




Other implementation details

e Python 2.6 mostly

e PostgreSQL9.1, stored procs in pgpl/sql
e memcache for the webapp

e Thrift for HBase access

e HBase (CDH3)

e Rolling out ElasticSearch for fulltext indexing of crashes




The problem




The problem

e Approaching capacity (> 85% of storage), causing instability
and wanted to store more

e No more power in datacenter and wanted to get out of that
datacenter anyway

e Question: How do you move >40TB of data in multiple data

stores to a whole new infrastructure in another state...with no
downtime?




Complication: Fragility

e Ongoing stability problems with HBase, and when it went
down, everything went with it

e Releases were nightmares, requiring manual upgrades of
multiple boxes, editing of config files, and manual QA

e Troubleshooting done via remote (awful)

e If we were going to do it over, we were going to do it right.




Analyzing uptime

e Not all parts of a system have the same uptime requirement

e As long as we had zero downtime on data collection, the rest
could be offline for a short period (hours, not days).

e This reduces the problem to a tractable one:

e Collect data to temporary storage (disk) during the
migration, and recommence processing once migration
complete

e Rewrote crash storage to use a pluggable primary/secondary




Moving data: PostgreSQL

e Theoretically easy!
e Only about 300GB at the time
e Sync from SJC->PHX

e Done in a maintenance window beforehand to reduce
downtime on the day, and repeated on migration day

e At this stage we did *not* have replication set up in the old
location




Moving data: HBase

e Originally intended to use distcp, an HBase sync utility

e Couldn’t use this on a running system, and we couldn’t
afford the downtime needed (24 hours+)

e Solution: Wrote a dirty copy tool: copy data while running
and then use distcp to reach consistency




Planning tools

e Bugzilla for tasks

Pre-flight checklist and in-flight checklist to track tasks

e Read Atul Gawande’s The Checklist Manifesto
Rollback plan

e Failure scenarios, go/no-go points

e Rehearsals, rehearsals, rehearsals




Build out




Problems with the old system

Legacy hardware

Improperly managed code

e Each server was different

e No configuration management

e Shared resources with other webapps

e Vital daemons were started with “nohup ./startDaemon &”

e Insufficient monitoring

e One sysadmin - rest of team and developers had no insight into production

e No automated testing




Configuration Management

e New rule: if it wasn’t checked in and managed by Puppet, it
wasn’t going on the new servers

e No local configuration/installation of anything
e Daemons got init scripts and proper nagios plugins
e Application configuration done centrally in one place

e Staging application matches production




Packages for production

e 3rd party libraries and packages pulled in upstream

e IT doesn’t need to know/care how a developer develops.
What goes into production is a tested, polished package

e Packages for production are built and tested by Jenkins the
same way every time

e Local patches aren’t allowed. A patch to production means a
patch to the source upstream, a patch to stage and a proper
rollout to production

e Every package is fully tested in a staging environment




Load Testing

e Used a small portion (40 nodes) of a 512-node Seamicro
cluster

e Simulated real traffic by submitting crashes from the test
cluster

e Tested system as a whole, under “real” production load




Troubleshooting

e New data center, new load balancers, new challenges
e Tested and tuned various configurations

e Network misconfigurations reduced performance: discovered
and resolved in smoke testing




Migration day

e Flew the team in

e Migration day checklist: http://tinyurl.com/migrationday

e Went remarkably smoothly due largely to good co-operation
between teams







Aftermath

e Backfilling the data collected during the outage window
turned out to be tricky for several reasons:

e Network flow issues from SJC -> PHX

e Old submitter in the old datacenter: retroactively
upgraded the code to the new multithreaded version to

solve that

e Outage in our external ADU data (Vertica failure) the day
after made it hard to be sure the data “looked right”




Postmortem

e Postmortem to learn what we did right and wrong

e (Really important to do this, even - especially? - when things
go well)




Everything is open (source)

Site: https://crash-stats.mozilla.com

Fork: https://github.com/mozilla/socorro

Read/file/fix bugs: https://bugzilla.mozilla.org/

Docs: http://www.readthedocs.org/docs/socorro

Mailing list: https://lists.mozilla.org/listinfo/tools-socorro

Join us in IRC: irc.mozilla.org #breakpad and #it

Hiring: http://mozilla.org/careers




Questions?




