
PostGIS
knows where you are!

Should you be worried?

so, PostGIS knows where you are
should you be worried?

Of course not, PostGIS is a friendly elephant,
with a ball
what should be worrying you is

Apple knows where you are!
at least, that is what the mass media have been
telling us

some security researchers found a file of locations
in their iPhone backups

and put them on a map
and lo, it was a track of all the places they had
been
but Apple doesn’t really care where you are,
you care where you are
so, Apples stores a record of all the WiFi points
and Cell towers you’ve encountered, to more
quickly get a fix

Because GPS alone is fairly slow, you have to find
satellites and
get signals and people are impatient
and triangulating wifi and cell is faster, if you
know where the signals originate to start with

consolidated.db

so Apple stores the locations in a little file
a SQLite database
but what was interesting was the mass outcry
location! location! location!
it’s a relatively new obsession in the general
world of IT

the whole story came out at Where 2.0,
a conference about spatial data that didn’t exist
until 2005

February
2005

June
2005

what’s special about 2005?
It’s when Google Maps was released
where 2.0 was a response to the huge interest
generated by Google Maps and the Maps API
location was suddenly a mass IT interest

everyone can
make maps....

everybody now had the ability to put data on a
map
and when everybody can do something, it follows
that

everyone must
make maps....

everybody must do that thing
and now the use of location is now seen as a
critical plane of competition for technology giants

so all the major players have rolled out maps and/
or location APIS
<explain each>
and some of the hotter start-ups of the last few
years have been pure location plays
any foursquare users in the audience to day? get a
life.

everyone is being
followed....

but before you can put things on a map
you need to know where they are, and nowadays
we know where a lot of things are instantly and all
the time

whether it’s your stolen laptop
in this case tracked and mapped using the Prey
Project

or your future dream house, here just a simple
mash-up of house addresses on Bing Maps

or your terrorist mastermind, surveilled in real
time with the latest in aerial and satellite
technology

or you. And your phone.
We’re now willfully carrying around location
sensors
all the time.

And in our day-to-day lives, we’re walking in
front of
sensors all the time.
We’re swimming in an ocean of location
information

it
wasn’t always

 this easy

but it was not very long ago that location
information
was expensive to get, expensive to use, and
expensive to display
back in the days when we said “G” “I” “S” and not
“location”

PostgreSQLPostGISGIS
what is

?

PostGIS is a fun name, it started out as a simple
sound play
Post-Gres-Q-L transforms to Post-Jis
And it incorporates GIS, which is what we were
aiming for
But what is GIS?

Geographic
Information
Systems

it’s an acronym that expands out boringly

maps + analysis =
GIS

but it’s not really a technology thing
it’s been done for a long time,
it’s a conceptual thing, not a technology thing
the classic example of GIS predates computers by
a long time

in 1854, there was a cholera outbreak in london
around Broad Street
John Snow, doctor, skeptic of “ill humors” theory
of cholera
thought it might be water-borne, but how to
prove it?
he started with street map and put a black bar by
every address with a cholera death

presented in overview, the evidence convinced
authorities to remove the Broad Street pump
handle
the epidemic subsided, and cholera came to be
understood as
a waterborne, not airborne disease

maps + analysis =
GIS

so, in GIS a map provides context,
but the item of interest is often something else
laid on top
and the analysis can be calculation-based or just
visual, like Snow’s

in the late 60s and 70s the item of interest to
governments was soils.
aerial photography, and resource inventory had
generated lots of data
but analysis was manual and slow

In 1968, Roger Tomlinson, father of GIS
convinced the government of Canada to try
computers.
He digitized maps of much of canada using a
drum scanner.
His system provided first-ever country-scale
analysis tools.

Canada Land Inventory

Tomlinson’s work became
the “Canada Land Inventory”
really the first true “GIS”
So, there’s another thing for Canadians to be
smug about,
We invented GIS.

"data for decision"

Those video clips can from a National Film Board
of Canada documentary about the Tomlinson era
GIS, which is very cool for both the history and
the early technology it shows off punch cards,
drum scanners, old map digitizers and so on just
type “data for decision” into Google to find it.

Once you have your map data in a computer you
can
do all kinds of fun analysis with
this is transportation cost surface for
moving timber from cutblock to mill.
Red areas are high cost.

You can built heat maps from aggregations of
point data (in this case concentrations of people).

You can segment your spaces with partitioning
algorithms. Here creating Theissen polygons
around Texas cities.

You can calculate the trade areas of your stores,
trade areas are usually defined in terms of drive
times.

Or most commonly, you can just print out
meaningless colourful pictures. Who won in 2008?
Chloropleth maps of population information can
be very misleading. A classic book taught in GIS
schools is

how to lie with maps. Even more than charts,
maps are a great visual tool for telling misleading
stories.

Residential
development

• area 50 hectares or
larger
• 50-meter buffer zone

around lakes and
streams
• area not already

developed
• area currently farm,

forest, pasture, or
undeveloped
• no slopes > 15%

Anyhow, the GIS view of the world is that you can
decompose reality into a series of logical layers,
that can be recombined to answer questions.
Let’s answer the play question “where is a good
place for residential development” using some toy
data and rules.
The rules are ...

start with land use and strip away all the
inappropriate current uses

Suitable land use areas

so our suitable land use areas are in blue

A
reas >

50m
 from

 w
ater

now take all the water features and buffer them to
create another layer of areas more than 50 meters
from water

now take a grid of elevation measurements and
from that
calculate the slope at each grid cell

the high slopes are red and low ones are blue
mask that to get just the low slopes

A
reas w

ith <
15%

 slope

areas that are flat enough to build on
now combine our three masks

A
reas satisfying

slope, type, w
ater conditions

merging the land use, water buffer and slope
masks
gives us many areas big and small
but we want areas > 50ha

so filter for groups of cells that form areas

find the areas of > 50ha and produce an output map with some roads and
lakes for context
that’s a basic piece of GIS analysis
a multi-factor combination of geographic layers

maps + analysis =
GIS

and until recently that kind of analysis has been
done exclusively with
“GIS software”

and the GIS community has an interesting view of
its place in the world.
see all the databases and where they end up?
everything feeds the GIS...

there is an understandable historical bias among
GIS
practitioners to put GIS at the center of every
workflow

But as we database people know, what is actually
at the
centre of real systems infrastructures is the
database.
So as GIS and location have become more
important
the worlds of IT and GIS are colliding and the IT
folks are saying

this we like this not so much

“we like this model of the world, where objects
have spatial representations,
that’s a very powerful decomposition
but, we don’t like your systems architecture, it’s
kind of silly
and, hey, we can take your layer model and
decompose it even more..”

geometry

parcel_id 5123141

owner Paul Ramsey

address 144 Simcoe St

assessment 128000

zoning R2

tax_code 55

Take your parcels layer for example, each parcel
has
information that fits in a database row, and if we
put each parcel shape into the row too, we can

parcel_id owner ... geometry

5123141 Paul Ramsey ...

5123141 John Simmons ...

6124912 Beth Williams ...

5123145 Jo Arvay ...

actually represent the whole layer
as a single table in the database!

layer as table?

but can database software handle this use case?

• able to support “non-standard” types

• able to handle arbitrarily large objects

• able to efficiently index objects in
or even

• able to provide functions for non-standard
types

it can, if we have a database that is capable of a
few things
...
can anyone think of a database that can do all
that?

Version 7.1

of course, although it was not until version 7.1
and the TOASTable tuple that we could handle
large enough geometries

Large enough?
Page size = 8192 bytes
Coordinate = 2 * 8 = 16 bytes
Max coordinates = 512

3316 1308

surely an 8K page size is large enough?
not to do GIS practically
even assuming no headers and no other
information in a table except geometry
maxcoords = 512
but Canada = 3316 and USA = 1308

PostgreSQL-GISPost

Anyhow, so, there’s actually another meaning to
PostGIS
It’s not just a sound play on PostgreSQL
It’s also an historical statement
Post-Gres is what came after In-Gres
Post-GIS is what comes after traditional GIS
It’s a new way of thinking about GIS

“We need to contact
everyone within 5000m

of the reactor!”

so we can answer questions that used to require
GIS software
using database queries

SELECT owner_phone
FROM house_parcels
WHERE ST_DWithin(
 geom,
 'POINT(...)',
 5000);

“Does bus #12 need
maintenance? How far
did it travel last week?”

SELECT
 Sum(ST_Length(geom))
FROM
 bus_paths
WHERE
 bus_id = 12
AND
 path_date > (Now() - '7d');

One SQL statement to answer a location services
query.
SQL in a database is very powerful, more
powerful than
desktop GIS in terms of amount of code required
and the size of
datasets than can be queried.

These are all questions we can answer with
PostGIS

PostGIS came into being in 2001, in a Victoria
consulting company named Refractions Research
the first revision wasn’t by me, but by Dave Blasby
(until 2004)
and Sandro Santilli (until 2006) and me from
2008.

CREATE TYPE geometry (
 internallength = variable,
 input = geometry_in,
 output = geometry_out,
 send = geometry_send,
 receive = geometry_recv,
 delimiter = ':',
 analyze = geometry_analyze,
 storage = main
);

in PostgreSQL, PostGIS geometry is just a variable
length type

VARHDR

TYPE [BSZMTTTT]

SRID?

FLOAT BOX?

xmin

ymin

xmax

ymax

DOUBLE
ORDINATES

PO
ST

G
IS 1.X

NPOINTS

as a PgSQL variable length object, PostGIS
structure starts with VARHDR, then...
the BOX and SRID are optional, so that small
objects (points, short lines) have lower metadata
overhead

VARHDR

FLAGS [BZMG????]
SRID [3 Bytes]

FLOAT BOX?

xmin

ymin

xmax

ymax

DOUBLE
ORDINATES

PO
ST

G
IS 2.X

TYPE

NPOINTS

For 2.0, we have reordered things a bit and added
some space for
extra flags and type numbers (with only 4 bits for
type numbers in 1.0 we ran out).
The objects are a bit heavier, but are now double-
aligned for the coordinates, so we hope to add
more efficient coordinate access.

PostgreSQL

GEOS PROJ4

LibXML GDAL

PostGIS

Yhe overall architecture of PostGIS makes use of
three specialized libraries from the GIS realm and
one for XML, we have more obscure dependencies
than PostgreSQL

GEOS

• C++, LGPL, computational geometry

• PostGIS ST_Relate() support

• bool geometry::touches(geometry)

• bool geometry::contains(geometry)

• geometry geometry::union(geometry)

• geometry geometry::buffer(double)

• C, BSD, coordinate transformation

• PostGIS ST_Transform() support

• int pj_transform(
 projPJ src, projPJ dst,
 long point_count, int point_offset,
 double *x, double *y, double *z);

• +proj=aea +lat_1=55 +lat_2=65
+lat_0=50 +lon_0=-154 +x_0=0
+y_0=0 +ellps=clrk66 +datum=NAD27
+units=us-ft

PROJ4

• C++, BSD, raster operations & formats

• PostGIS RASTER support

• GDALDataset::GetRasterXSize();

• GDALWarpKernel::PerformWarp();

• GDALDataset::BuildOverviews();

GDAL

• C++, XML parsing / generating

• PostGIS ST_GeomFromGML()

• PostGIS ST_GeomFromKML()

• Not ST_AsKML() or ST_AsGML()!

LibXML2

Type and
index

2001 2006

0.1

GEOS LWGEOM
experiment

ANALYZE

0.5 0.6 0.7 0.8 0.9 1.0

Distance

OGC
standards

PgSQL
7.2

Point-in-
polygon

Index
selectivity

OGC
SFSQLReprojectionWKT

WKB

JTS LWGEOM

4D Polygonize

2002 2003 2004 2005

Basic functionality all done in year one (2001).
Mapserver! P-i-P!
Full SFSQL by year four (2004).
Geoprocessing (2007)
poly-build, LRS, non-standard utility functions
(dump, make)
More standards / performance (present)

2006 2011

Regression
tests

ISO
SQL/MM

Curves

Linemerge

Stability

Performance

LRS

1.1 1.2 1.3 1.4 1.5

SRS
performance

Cascaded
union

Prepared
geometry

Developer
improvements

New
docs GEOGRAPHY

2007 2008 2009 2010

GUI
loader

Basic functionality all done in year one (2001).
Mapserver! P-i-P!
Full SFSQL by year four (2004).
Geoprocessing (2007)
poly-build, LRS, non-standard utility functions
(dump, make)
More standards / performance (present)

2011 2016

3D/4D
Indexing

Typemod for
GEOMETRY

Achieves
sentience

PolyhedralSurface

2.0 XP Vista

Slave mines

Hunter-killer
robots

Radioactive
wastelands

2012 2013 2014 2015

GUI
dumper

Raster?

Basic functionality all done in year one (2001).
Mapserver! P-i-P!
Full SFSQL by year four (2004).
Geoprocessing (2007)
poly-build, LRS, non-standard utility functions
(dump, make)
More standards / performance (present)

who’s using PostGIS?

BDuni

IGN, managed national base map in GIS software
BDuni 120M features, nationwide
in 2003, was managed with files and GIS software
wanted to start using a database

• PostGIS? DB2? Oracle?

• Can DB handle 100M spatial
features?

• Can DB do spatial transactions?

• Yes! Yes! Yes!

DB Evaluation

startup companies are using postgis
zonar makes vehicle tracking hardware
and runs software service to map fleets

GSM

locations come in from hardware
are stored in PostGIS
and mapped by MapServer

aerials gis files satellite

Google uses PostGIS in a similar way to manage
metadata about all the GIS data they are storing
and how they have processed it

Real-estate listings company, Redfin started with
MySQL, found spatial queries too slow (bad
planner), moved to PostgreSQL and PostGIS.

So talking to PostgreSQL people about PostGIS,
there’s some questions that come up naturally
that I wanted to address.

“why bother?”

Why even write PostGIS? PgSQL already has native
PATH and POLYGON and BOX and CIRCLE, isn’t
PostGIS redundant?
1. Native types were computer graphics primitives
not GIS

• GIS data objects are large, type must be
TOASTable

3316 1308

size
...

• GIS polygons have holes

holes
...

• GIS objects require “aggregation”

• MULTIPOLYGON,
MULTILINESTRING,
MULTIPOINT

finally aggregation
...
ok, so if the native types weren’t good enough,
why not just improve them? why isn’t PostGIS part
of PgSQL

“why isn’t PostGIS just
part of PgSQL?”

and that answer is fairly complex, but it comes
down to a number of lucky historical accidents,
because it’s a VERY GOOD THING that PostGIS is
not inside PgSQL

“why isn’t PostGIS just
part of PgSQL?”

Necessity:
Don’t really need to

In 2001, at the start, because PgSQL had this nifty
type extension mechanism.
Why patch existing code if the patch might not be
accepted when we could try out our ideas in an
extension?
So that’s what we did, and it worked great.

“why isn’t PostGIS just
part of PgSQL?”

Licensing:
GPL vs BSD

I submitted PostGIS to patches in 2001, and the
license was raised as an issue. At the time, all the
PostGIS contributors were in the company, so we
could have re-licensed (that’s no longer true).
But there were other objections also.

“why isn’t PostGIS just
part of PgSQL?”

Size:
That’s a lotta code.

The size objection was only raised by a couple
folks, but it was raised.
Between java hooks and regression tests, PostGIS
0.5 was about 400k compressed.

“why isn’t PostGIS just
part of PgSQL?”

Quality:
That’s some ugly code...

Fortunately, we never actually got to the point in
2001 where anyone looked closely at the code,
but honestly, it was fugly then. It’s fugly now.
You probably would have hated it.

“why isn’t PostGIS just
part of PgSQL?”

Necessity:
Don’t really need to

And in the end, given the lack of strong
agreement in the core team and the fact that we
didn’t need to be integrated to work, it just didn’t
happen.

“why isn’t PostGIS just
part of PgSQL?”

It’s better this way.

And I think that’s a good thing
Being an add-on has had very positive effects

Type and
index

2001 2006

0.1

GEOS LWGEOM
experiment

ANALYZE

0.5 0.6 0.7 0.8 0.9 1.0

Distance

OGC
standards

PgSQL
7.2

Point-in-
polygon

Index
selectivity

OGC
SFSQLReprojectionWKT

WKB

JTS LWGEOM

4D Polygonize

2002 2003 2004 2005

2006 2011

Regression
tests

ISO
SQL/MM

Curves

Linemerge

Stability

Performance

LRS

1.1 1.2 1.3 1.4 1.5

SRS
performance

Cascaded
union

Prepared
geometry

Developer
improvements

New
docs GEOGRAPHY

2007 2008 2009 2010

GUI
loader

First, we have a very small team, 5-6, of which
maybe 1-2 people are actively working at any
given time.
We find it hard to synchronize and test on our
own schedule.
Our schedule doesn’t necessarily match the PgSQL
schedule.
Having to put features out on the PgSQL schedule
would mean many features would be delayed and
delivered much later than otherwise.

features

begged for
or added

The existence of a complex and active add-on
like PostGIS has helped improve the support for
add-on’s in PostgreSQL in general.

• space for more dimensions in table
stats

• adding an ANALYZE hook for user
defined types

• building add-ons without requiring a full
source tree

• support for more complex projects in
PGXS

• typmod support for user defined types

features begged for or added features begged for or added

Tom Lane:
PostGIS is our biggest, highest profile

 example of a third-party add-on,
it pushes the limits, which is good.

So PostGIS has helped push the envelope,
Tom, I hope you’ll forgive the paraphrase, but I
couldn’t find the original email

features

users funded

and the presence of a skilled PgSQL development
community has allowed us access to new
advanced features, with the simple application of
money

• improved GiST concurrency (8.1)

• GiST KNN searching (9.1)

features users funded

GiST concurrency was funded by a consortium of
companies with an interest in high-speed PostGIS.
KNNGiST was funded by a client of OpenGeo.

==

so, PostgreSQL and PostGIS
go together like chocolate and peanut butter
is there room for improvement?

future features

here’s some new and upcoming features we know
are happening

raster type

some data, like continuous surfaces are easier to
model in raster
and raster map algebra, combining grids and
running kernels on grids is powerful
combined with raster/vector and vector/raster
conversions, a good addition for PostGIS 2.0

geography type

Up until 1.5, PostGIS only had a “geometry” type.
The “geography” type added in 1.5 allows direct
support for spherical coordinates, that is,
latitude/longitude points.

You could store latitude/longitude in “geometry”,
but things didn’t always work the way you might
expect.
For example, a simple thing like a circle around
Hawaii, when you interpret it in a plane instead of
on a sphere,

You get very bad results.
Instead of a circle around Hawaii, you get a box
that covers almost everything except Hawaii.
It’s that an obvious error, why did it take so long
to support spherical coordinates?

Because it’s mathematically hard, and you can
mostly work around it,
except when you can’t.
Even Google Earth has a hard time with polygons
at the dateline and over the poles.

3d/4d indexing

POINT(X Y T)

for PostGIS 2.0
handling data streams from devices will
increasingly involve good analytics and speed
against large temporal data tracks, which means
higher dimensional indexing

3d objects

building modelling in 3D data collection
and underground reservoir modelling is driving
the need
for real volumetric objects
PostGIS 2.0

future workloads

looking at the future of PostGIS workloads,
the ways people are really exercising PostGIS and
PostgreSQL hard
this is what I’m seeing

write-scalability

this is a problem outside the spatial world,
but I’m seeing it inside as well

foursquare started on PostGIS and had to
transition relatively early on to MongoDB to
handle the write load
all the check-ins coming in could not be written
fast enough
SimpleGeo “AWS of geo” built their system from
scratch on Cassandra

but it’s not just web start-ups, anyone monitoring
a fleet of GPS devices has a pretty large data
stream to deal with
Zonar deals with it by partitioning by customer,
but some customers fleets are so big they also
have to partition by region
it’s not ideal

Postgres-XC?

This is a problem outside my abilities, but it’s
nice to know other folks are already thinking
about it and working in detail
Hopefully the solutions will continue to support
user types like PostGIS

parallel processing

another big future issue is that
people are using PostGIS for larger and larger
analysis runs

Suppose you had a big customer database,
millions of customers, with geocoded addresses,
suppose you’re Walmart.
And suppose that, for marketing purposes, you
want to know race, income, and other things
about your customers you can’t get from the cash
register purchase records.

You might take the US census data, which
contains the race, income and demographic fields
you’re interested in,

and join the census data to the customer data
using a spatial query,

SELECT
 census.*, customers.*
FROM
 census, customers
WHERE
 ST_Contains(
 census.geom,
 customers.geom);

something like this,
which would spit out a table that added census
attributes to customers,
and you could pipe into a statistical analysis to
get your answer.

However, in running the query,
the index will perform a nested loop,
so for each county we’ll get the set of points that
meet the index condition

and within that set we will go through each point
and test to see if they meet the exact condition of
containment within the shape

to get the final set, but the painful part is that
each of these millions and millions of customer
points will be tested sequentially
as each county is handled in sequence and each
point in each county is handled in sequence

one core per query

even if you have a 16-core computer, the query
will only heat up one core

if your queries are
short and cheap
sequential is OK

for ordinary workloads
parallelism is from multiple simultaneous queries
postgres forked back-end works fine

if your queries are long
and expensive

sequential is !OK

do these polygons intersect?
calculate the union of these shapes.
what is the geodesic distance between these
shapes
are all very very very expensive questions,
compared to the usual simple database
calculations

GIS analysis could be
parallelized to great

effect

but for GIS analysis workloads, there is just one
query, with many trivially parallelizable parts
each county-versus-pointset test is independent
each point in polygon test inside that is
independent
within each point in polygon routine, even point-
versus-edge tests are independent

Hard problem to solve, but very useful in real
world data processing
OpenStreetMap, is a map wiki, and the data they
gather is road lines and boundary edges.
To form polygons to fill in pretty maps they run
their data through PostGIS to condition it, a
process that takes many hours.
Parallelization would improve their process
hugely.

The future of PostGIS and location in general
revolves around all these sensors we’re all
carrying in our pockets, and all the new satellites
being blasted into space.
The volume of data flowing in is only going to get
higher, the analysis needs only going to get
larger, the dimensionality is going up, from 2d to
3d to temporal.

We’re all generating immense corpuses of data,
and the tools to analyze and map our personal
data should be open source.
We need to control our data and to control our
tools.

As a community, PostGIS been fortunate to be
able to build on your incredible work.
We’ve definitely been standing on the shoulders
of giants.

• “PostGIS has triggers and foreign keys and
procedural languages”

• “PostGIS has full ACID transactions”

• “PostGIS can do hot back-ups”

• “PostGIS can do replication and warm
stand-by”

“Sure....”

and thanks to you giants, I’ve been able to have
some wonderful conversations about the “features
of PostGIS”...

So let me say right now, on behalf of the PostGIS
community, “thank you for making us look so
damn good”.
You’re building the worlds most advanced open
source database, you’re giving people the power
to manage their own data, and the tools to build
amazing things.

thanks you!

Thanks to your help, we’re look forward to many
more years of great development.
Thanks for having me here today, let’s have a
great conference.

