NTT's Case Report

Introduce PostgreSQL into reliable and large-scale telecommunication support system

Tetsuo SAKATA
NTT Open Source Software Center
19th May 2011
Agenda

- Introduce ourselves
- Understand Needs
- Evaluation
- Development
- Technical supports
- NTT Cases
- Expectation
Introduce myself

- **Name:** Tetsuo SAKATA
- **Job:** Software engineer / manager at NTT OSS center.
- **Community**
 - director of JPUG (Japan PostgreSQL User Group)
Introduce NTT

- Nippon Telegram and Telephone Group profile
 - Revenue: 10.2 trillion yen ($113 billion)
 - Second largest telecommunication company.
 - Number of employees: 200,000.
 - Businesses
 - Number of Consolidated Subsidiaries: 536
 - Telecommunication
 - Subscribers: 93 million (incl. regional, long distance, mobile)
 - System Integration
 - Large company and government systems
 - Others
 - Construction, hospital, publishing, florists etc.
Character of NTT system

- Telecommunication operation system (OpS)
 - Large-scale
 - Each DB is large (e.g. 100GB) and some communicate each other.
 - High availability and reliability
 - Telephone system is available more than 99.999%.
 - Long-lived
 - Expected lifetime is 7 year's

- Issues
 - Proprietary DBMS are widely used.
 - High-cost, supports are short
 - Vendor lock-in.

OSS are expected to solve these issues.
Introduce Open Source Software Center

- Mission:
 - Reduce TCO with OSS; replacing proprietary software
 - Support NTT Group companies' OSS usage
 - Q and A
 - Consultation
 - Develop / improve OSS
 - Center of OSS competence in NTT Group.

- Established in Apr. 2006.
- Location: Shinagawa Tokyo.
Understand user needs;
How to introduce PostgreSQL?

- Information on performance
 - Show good and stable performance
 - Availability/reliability
 - downtime to recovery (e.g. 5' for five-9s)
 - To prepare equipment (HDDs, CPUs etc.)
- Operation capability
 - compatibility with other operation tools
 - Usability
- Improve performance and usability
- Technical support
OSSC's Activities

- Input, Activity, Output and Target

Input
- Production System
- PostgreSQL
- Question from Group

Activity
- Consultation
- Evaluation
- Tech. Support
- Development

Output
- Report
- Tools
- PostgreSQL

Target
- Group Company
- PG Community
Evaluations

What characters to know?

- Most systems are OLTP not OLAP
- Types of Transactions; read/write intensive
- TPC C and TPC W models are used
 - C model (DBT-2): write, I/O intensive
 - W model (DBT-1): read, CPU intensive
 - Other models: pgbench, DBT-3

Thru-put and stability

- Peak performance test (3Hr. Workload > 90%)
 - CPU scalability evaluated.
- Long-run test (72Hr. 70% workload)
 - observe stability during vacuum and checkpoint
Results on throughput

- Results of PostgreSQL and other DBMS.

- Help adapting PostgreSQL for production systems having particular population and frequent requests.

<table>
<thead>
<tr>
<th></th>
<th>8.2</th>
<th>8.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC-W WIPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rd:wrt = 8:2</td>
<td>1700tps</td>
<td>2100tps</td>
</tr>
<tr>
<td>TPC-W WIPSo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rd:wrt = 5:5</td>
<td>1100tps</td>
<td>2100tps</td>
</tr>
<tr>
<td>TPC-C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rd:wrt = 1:9</td>
<td>123tps</td>
<td>165tps</td>
</tr>
</tbody>
</table>

Equiments used for evaluations;
[TPC-W] Server: HP DL380G5 (Xeon 5160 3GHe, 12GB memory), Storage HP MSA500
[TPC-C] Server: DL580G4(Xeon DC 3.4 GHz 4 core, 24GB memory), Storage HP MSA 1000
[OS] Redhat Enterprise Linux 5 update 1
Values are gotten from 48 hours execution and displayed in average.
Results on CPU scalability

- Many cores CPU be commodity
 - 4-8 for middle-scale, 32 for large-scale.
 - Good scalability up to 8 cores for 8.3 and after.

CPU Scalability of PG 8.3 in case of DBT-1
Results on throughput

- Show the results on PostgreSQL and other DBMS.
 - Help choosing PostgreSQL for production systems having particular population and frequent requests.
 - PostgreSQL usable to replace proprietary DB
 - Average performance sufficient
 - How about transitional performance?
 - Stability of performance
Significance of Performance Stability

- If performance is not stable,
 - Query not answered for a long time → trouble
 - Difficult to guarantee minimum performance (e.g. longest response time)
- Observe stability with long-run test.
 - Vacuums and checkpoints done many times
 - Long-run stability evaluated with TPC-W
 - Workload itself stable against time
 - TPC-C increases data population and (in result) workload as time passes.
Results on Stability test (1)

- Response stabilized in 8.3
 - 8.2 (Left) glitches caused by checkpoints
 - 8.3 (Right) glitches reduced 20% of 8.2
- Glitches in 8.2 concerned to be obstacle for production systems.
Results on Stability test (2)

- Influence of dead tuples and vacuum op.
 - autovacuum=off (Left) 8.2 reduces performance
 - autovacuum=on (Right) both cause glitches

* 2 figures above are referred from 'Let's Postgres'
 http://lets.postgresql.jp/documents/case/ntt_comware/2
Results on Stability test (3)

- Improvement by cost-bases vacuum
 - Cost-based vacuum smooths through put
 - Vacuum prolonged to 33 hrs from 2 hrs prev. case

* the figure above is referred from 'Let's Postgres' http://lets.postgresql.jp/documents/case/ntt_comware/2
Summary on Evaluation

- PostgreSQL 8.3 shows enough good performance for our production systems having middle scale DB.
 - Since 8.3, introduction has been accelerated.
 - Vacuum with HOT and cost-based, time-spread checkpoint are important improvements.
 - Improved vacuum reduces operation design.
 - Remaining issues...(including other evaluations)
 - Scalable CPU handling (e.g. for 64 cores)
 - More efficient I/O handling (an evaluation on I/O bandwidth shows that of PostgreSQL is 4 times as commercial DBMS)
 - Shorter recovery time.
Evaluations on Operation

- How to evaluate Operation feature?
 - Interview: Operating companies have OSS dept., which we interview their needs.
 - Tech. Support: FAQs hint improvement requests.
 - e.g. PITR operations (setting, take backups, erase dated archive files etc)
- What to evaluate about?
 - Data Handling: backup (restore), data-load
 - Monitoring: slow queries, statistics etc.
- This process gives us important insights.
 - Information is qualitative not quantitative as throughput, it gives us insights for improvements.
Evaluations on Data Operation

- Backups:
 - Logical: pg_dump itself is good enough but not widely used because it doesn't guarantee committed transactions (by nature).
 - Physical: PITR method furnished since 8.0, but not easily used because its complex operation.

- Data loading:
 - COPY is useful but not enough fast.
 - In old versions, COPY was not fast enough comparing commercial DBMS.
 - Data loading used daily to speed batch jobs partly done by offline.
Evaluations on Data Operation

- Usage of fast Data loading:
 - DB migration for production system done limited time.
 - Speed batch jobs partly done by offline (below)

- **Unload (dump) is fast enough**
- **Load is not fast as commercial DB**
Evaluations on monitoring

- Importance of various Monitoring:
 - PostgreSQL provides useful data for tuning and trouble shoot via queries, we need external tool that get and collect PostgreSQL's internal statistic data.
 - Some trouble difficult to reproduce, acquired data used for post-mortem analysis by OSSC staff.

<table>
<thead>
<tr>
<th>Type</th>
<th>Usage</th>
<th>Means</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Living</td>
<td>Fail over Cluster</td>
<td>Process id check</td>
<td>OK</td>
</tr>
<tr>
<td>Slow query</td>
<td>Trouble shoot</td>
<td>Operation logs</td>
<td>OK</td>
</tr>
<tr>
<td>Internal statistics</td>
<td>Trouble shoot</td>
<td>Query to PostgreSQL</td>
<td>Need external monitoring tool</td>
</tr>
</tbody>
</table>
Development

- improvement to PostreSQL core
 - Stability
 - Availability
- development of peripheral tools
 - Backup
 - Data loading
 - Monitoring tool
For performance stability

- NTT OSS Center donated some functionality for Vacuum and Checkpoints
 - Most of them were accepted to PostgreSQL core
 - Cost-based vacuum
 - multiple concurrent autovacuum processes
 - Checkpoints spread out (smooth checkpoint)
 - These help PostgreSQL performance stability, which accelerate introduction.
Improve Availability

- About 1/3 NTT systems require fail over within 1 min.
 - Fail over cluster with shared disk requires fsck when switching, which takes several minutes.
 - Replication clusters using query replication guarantee loss-less fail over, however impose incompatibilities with original PostgreSQL.

- We start to develop stream replication about 2006.
 - At first non OSS product, changed OSS in 2008.
 - Proposal at 2008 PG Con (Mr. Fujii)
 - Streaming replication was implemented in 9.0 (2010)
 - Synchronous mode will be in 9.1
Peripheral software for HA has been developed

- To switch server when failure, Linux-HA (Pacemaker) is used
 - NTT OSSC also uses Pacemaker for High-availability system
- Pacemaker's Resource Agents

Diagram:
- **Master**
 - PostgreSQL
 - RA
 - Pacemaker
 - Hardware + OS
- **Slave**
 - PostgreSQL
 - RA
 - Pacemaker
 - Hardware + OS

Synchronous Replication
Application of HA Cluster

- HA Cluster including PostgreSQL with synchronous Replication expected to be introduced to more reliable systems;
 - Telecommunication support systems
 - Trading systems
 - Web commerce with high-availability
pg_rman ; backup tool

- Motivation ; FAQ.
 - PITR is powerful but complex
 - When expire old archival files?
 - How and from which archives to restore?
- Solution
 - Tool embedded operation know-hows
 - Pg rman
 - Takes and restores all necessary files to recover with one command
 - Back-up files are cataloged.
 Many know-hows

http://code.google.com/p/pg-rman/
pg_bulkload; data loader

- **Motivation**: Data migration speed up.
 - Data migration in production systems should complete scheduled time
 - Data migration duration dominates DB size limit for PostgreSQL
 - COPY was not enough quick (ca. 2005)

- **Solution**
 - Dedicated Loading Tool; pg_bulkload
 - Initial and append modes
 - Direct and parallel load
 - Fast index creation
pg_bulkload; data loader

- Pg bulkload is as 2-3 times fast as COPY

![Loading Time Comparison Chart]

- Bulkload and others
- pg_bulkload
- COPY without indexes
 - Table
 - PK
 - Index
- COPY with indexes

http://pgbulkload.projects.postgresql.org/index.html
pg_statsinfo; monitoring Tool

- **Motivation**
 - **Effective support activity**
 - Post-mortem analysis
 - **Handy performance monitor**
 - Predict performance trouble beforehand

- **Features**
 - **Statistics collector with low power-consumption**
 - Monitoring system runs (partially) on the Production system.
 - **Visualize statistics**
 - **Programmable alert**
Collected data generate 'Report' and 'Alert'

- Configuration: statistics collector + message filter for alert
- Lower consumption: overhead < 3%
Support Activities

- Technical Q and A
 - A few hundreds questions answered a year within 3 business days
 - Various questions
 - From usages to trouble issues
- Consultation
 - Migrate from Proprietary DBMS
 - Migration know-hows are cataloged (ca. 50 items; “how to rewrite synonym in Oracle”)
 - Performance tuning aids
 - Evaluate particular workloads and suggest tuning methods.
NTT Cases

- OSS Center has introduced PostgreSQL more than 100 systems; High light specs as follows
 - **DB Size:** Largest 3TB.
 - **Frequency:** 1000 TPS (or more)
 - **HA:** fail over takes less than 1 min. (15” measured)
- Statistical Facts expressed
 - **Individual cases are not allowed to open**
View of NTT's Production systems

- Target of OSS introduction in NTT in-house system
 - NTT runs several hundreds systems
 - Survey shows 80% of system can be introduced PostgreSQL

- Trend of PostgreSQL introduction
 - From small-scale and less available system to large-scale and high available ones

Database size [Byte] vs. Availability

- 100GB: 99.99% available, DB fail over 10 min.
- 1TB: 99.999% available, DB fail over within 1 min.
- 10TB: 99.999% available, DB fail over within 1 min.

System categories:
- Subscriber manage
- Facilities manage
- Sale assistance
- Personnel, Allowance
- Back office

- 289x56 - 303x36
- 448x56 - 462x36

- 99.99% available
- DB fail over 10 min.
- 99.999% available
- DB fail over within 1 min.
Trend of PostgreSQL Introduction

- About 130 systems introduced PostgreSQL
 - 30-40 systems a year.

Introduction to NTT Groups' System

<table>
<thead>
<tr>
<th>Year</th>
<th>Introduced</th>
<th>Accumulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2007</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>2008</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>2009</td>
<td>50</td>
<td>120</td>
</tr>
<tr>
<td>2010</td>
<td>70</td>
<td>190</td>
</tr>
</tbody>
</table>
Expectation

- Federated DB
 - Large DB system consists of many databases.
- Performance for 'internal cloud'
 - Efficient processing is essential
 - CPU scalable
 - I/O bandwidth
- More installation via community
 - Many installations improve quality
 - Many use cases accelerate introduction
End

Thank you for your attention