

To ORM or not to ORM

PGCon, 2010

lvaro Hern ndez TortosaÁ á
<aht+pgcon2010@olog2n.com>
Olog2n

What a wonderful world...
Most applications process data

Many data applications need to persist data

The relational/SQL model addresses most of
these needs

Databases were hard and error-prone
to use from applications

ORMs came to the rescue

It's a wonderful world, we've got everything:

✔ Data may be safely persisted

✔ Databases also provide relational
model, concurrency, powerful data-aware
QL, etc
✔ ORMs make databases very easy to use

“DEVs cry about the performance of my DB.
But its their ORM's fault!”

“I just use the DB as a data storage.
Indeed, why do I need to use a DB?”

“ORMs cannot frequently hold the abstraction,
so I often break it issuing direct SQL queries”

… this would be!!!!

Object to Relational Mapping
Relational (table) OO (class)

What drove the need for ORMs?

Automatic query generation

Abstraction:
MVC, DAO

Security &
error management

Db
Indep.

So, what's the deal, then?

DBAs DEVs

Performance
problems

Loosing
DBAs jobs!

Not fully
exploiting the
DB power

DBs are
perceived as
slow and
heavyweight.
Why use them?

Are they capable of fixing them all?
Is it just that they are missused?
Is the tool guilty?

Do you use knives?

Could you live without them?

Do you use them to kill?

Most people use knives
Most people need knives
Only very few people use knives to kill

=> It's not knive's fault, do not ban them

A lot of DEVs use ORMs
Most DEVs want or need ORMs
But results are not good. So even if it weren't
ORM's fault,

=> It's ORM's fault if nobody get them right

Then, what's wrong with ORMs?
(Part I. The basics)

Right Wrong Stupid!

Map datatypes,
Automatic SQL

Create the
database
automatically

Programmed
query language

Let's play “Right & Wrong”

Right Wrong

Map datatypes,
Automatic SQL

Create the
database
automatically

Programmed
query language

Then, what's wrong with ORMs?
(Part II. The facts: db features)

With ORMs, its DEVs who are creating the
databases!!

It's difficult, or impossible, to use some
basic-to-intermediate db features, such as:
➔ Domains / validated data types
➔ Functions
➔ Triggers
➔ Custom aggregates
➔ Roles

Then, what's wrong with ORMs?
(Part II. The facts: performance)

ORMs may perform very inefficient queries:
➔ Doing JOINs everywhere
➔ Doing selects/subselects instead of
JOINs
➔ Not batching up queries in transactions
➔ Issuing more queries than its needed
(many UPDATEs vs. UPDATE WHERE)
ORM's abstraction may lead to poor perf:
➔ list.size() vs. SELECT COUNT(*)
➔ Sorting/filtering in app space
➔ It is frequently broken (direct queries)

Then, what's wrong with ORMs?
(Part II. The facts: db schema)

ORMs lead to problems in schema mgmt:
➔ Denormalized schemas
➔ Discriminator columns and NULLs
everywhere (inheritance strategies)
➔ Severe deployment problems (apps are
easily deployed, but how are live database
schemas incrementally deployed?)

Then, what's wrong with ORMs?
(Part II. The facts: SQL abandonment)

ORMs contribute to SQL abandonment in
favor OO databases, NoSQL, because:

➔ After all, they are not easy to use
➔ Don't support advanced SQL features
➔ Do not perform well
➔ The abstraction is frequently broken

But DEVs praise ORMs, while blame SQL

Then, what's wrong with ORMs?
(Part III. Inventing a squared wheel)

I'm using a DB as the portal's backend,

Wait, what do you say?
News are simple, why bother with a
DB? Indeed, they are not relational

But how you handle related
news, categories, tags...?

Easy! Within the flat XML, we store
FKs and some data constraints

but news are stored in an XML file
I'm using a DB as the portal's backend,

Then, what's wrong with ORMs?
(Part IV. The myth of db independence)

ORMs only offer features that are
“standardized” among databases (i.e., the
minimum subset of the common functionality)
This is very, very limiting (specially if you
consider MySQL as a database ;)
It's done to achive database independence
➔ But who really changes the db?
➔ Different testing/production dbs? (Not sane)
➔ ORMs already have db-specific engines!
➔ Is it really worth to sacrifice a lot of db power?

Using ORMs
(aka test considerations)

➔ We assume db is generated (by DBAs). The
ORM generates the classes (“reverse eng.” ?)

➔ No special tweaking or advanced ORM
knowledge would be used: we want to show
what the average (or usual) user will do

➔ Will use Hibernate (probably most widely
used ORM) as the testbed.

Using ORMs
(Test 1: a really simple test)

CREATE TABLE not_working (
foo integer,
bar integer

);

Result: ORM did not mapped the table.
Reason: it lacked a PK! – so what?

Using ORMs
(Test 2: a really simple test – with PK)

@Entity @Table(name="simple_test",schema="public")
public class SimpleTest {
 @Id
 @Column(name="foo",unique=true,nullable=false)
 public int getFoo() { … }
 @Column(name="bar")
 public String getBar() { … }
}

insert into public.simple_test (bar, foo) values
($1, $2);

CREATE TABLE simple_test (
foo integer PRIMARY KEY,
bar text

);

Using ORMs
(Test 3: testing sequences)

@Entity @Table(name="with_sequence",schema="public")
public class WithSequence {
 @Id
 @Column(name="foo", unique=true, nullable=false)
 public int getFoo()
}

Results: always tries to insert “0” (fails!)
– Its easy to tweak, with PK generation strategies

CREATE SEQUENCE with_sequence_seq;
CREATE TABLE with_sequence (

foo integer PRIMARY KEY
 DEFAULT nextval('with_sequence_seq')
);

Using ORMs
(Test 4: varchars, column CHECKS...)

 @Id @Column(name="foo", unique=true,
nullable=false, length=9)
 public String getFoo() { … }
 @Column(name="bar")
 public Integer getBar() { … }

insert into public.varchar_and_checks (bar, foo)
values ($1, $2), $1 = '6', $2 = '0123456789'
insert into public.varchar_and_checks (bar, foo)
values ($1, $2), $1 = '1', $2 = '0'
Tweakable (requieres configuration and manual code)

CREATE TABLE varchar_and_checks (
foo varchar(9) PRIMARY KEY,
bar integer CHECK (bar >= 5 AND bar < 100)

);

Using ORMs
(Test 5: using DOMAINs)

 private Serializable foo;

 @Column(name="foo", nullable=false)
 public Serializable getFoo() { … }

 public void setFoo(Serializable foo) { … }

CREATE DOMAIN foo_domain AS char(4) CHECK (
 VALUE IN ('bar1', 'bar2', 'bar3')
);
CREATE TABLE enum_domain (

i integer PRIMARY KEY,
foo foo_domain NOT NULL

);

Results: unusable!!!

Using ORMs
(Test 6: JOINs and lazy loading)

 @Id @Column(name="name", unique=true,
nullable=false)
 public String getName() { … }
 @ManyToOne(fetch=FetchType.LAZY)
 @JoinColumn(name="name", unique=true,
nullable=false, insertable=false, updatable=false)
 public Person getPerson() { … }
 @Column(name="score", precision=4)
 public BigDecimal getScore() { … }

CREATE TABLE person (
name varchar PRIMARY KEY, surname varchar);

CREATE TABLE student (
name varchar PRIMARY KEY REFERENCES person(name),
score numeric(4,2));

@OneToMany(cascade=CascadeType.ALL,
fetch=FetchType.LAZY, mappedBy="person")
 public Set<Student> getStudents() { … }

Using ORMs
(Test 6: JOINs and lazy loading)

public List<Student> getStudents() { … }

select student0_.name as name4_, student0_.score as
score4_ from public.student student0_

select person0_.name as name5_0_,
person0_.id_address as id2_5_0_, person0_.surname as
surname5_0_ from public.person person0_ where
person0_.name=$1
[repeated N times, one per row]

Result: M*N+1 queries (M: # of FKs, N: # of rows)

for(Student student : getStudents(session)) {
 System.out.println("Name: " + student.getName()
+ ", score: " + student.getScore().toPlainString());
 System.out.println("Surname: " +
student.getPerson().getSurname());
}

The Vietnam of ORMs
(aka why is it so difficult to get it right?)

http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx

“Early successes yield a commitment to use
O/R-M in places where success becomes more
elusive, and over time, isn't a success at all due
to the overhead of time and energy required to
support it through all possible use-cases”
Ted Neward

● There's a fundamental impedance mismatch
between objects and the relational world (sets)
● There's no clear exit solution

0 100 200 300 400 500 600

0

2000

4000

6000

8000

10000

12000

JLOC - Java Lines Of Code

CON - own ORM

days

L
O

C
s

LOC evolution of a custom ORM

Looking for an exit strategy
First break all the rules!!!

No 1:1 type/relation field/column mapping.
Maybe columns to datatypes mapping, where
a class is like any other query: a set of cols

Looking for an exit strategy
What DEVs should do (ROMs)

✔ DEVs should never create/alter db schemas
✔ ROMs should be able to create code from an
existing database
✔ All data validation done within the db must
be supported and also performed by ROMs
✔ ROMs should easily support db features such
as function calls, aggregates, custom types,
triggers... and map them to code automatically

Looking for an exit strategy
What DBAs should do

✔ DBAs are responsible for db alter/creation
(isn't it weird to be reclaiming this back?)
✔ Create and define an “API” db ↔ app:

• Is a contract with DEVs
• May consist of tables, views, insert/update

functions and the queries to obtain the data
• Allows for normalized schemas while it's

simple for DEVs
✔ Get involved in the design of ROMs

The PostgreSQL community
What's our role here?

● DBAs, get involved!
● The PostgreSQL community is a very open
one (BSD), open to changes. We need to send a
message to the world
● Don't sit back and wait! DBAs are loosing
their jobs, or their current tasks! DEVs are
running away to NoSQL. Say YeSQL!!
● Help in the next generation ROMs and
collaborate with DEVs in the db/app API

Conclusion
Still an open debate

¿To ORM or not to ORM?
➔ Programmers need abstraction
➔ So, YES, but in a different way:

• ROM
• DB is done by DBAs, which offer an API
• Rethink the 1:1 mapping mantra
• Remove bloat, improve performance
• Offer advanced SQL features

To ORM or not to ORM

PGCon, 2010

lvaro Hern ndez TortosaÁ á
<aht+pgcon2010@olog2n.com>
Olog2n

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24
	Página 25
	Página 26
	Página 27
	Página 28
	Página 29
	Página 30
	Página 31
	Página 32
	Página 33
	Página 34
	Página 35

