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Playing along

● Community repository
– git clone git://git.postgresql.org/git/postgresql.gitgit://git.postgresql.org/git/postgresql.git 

pgsql

● My repository:
– git clone gitgit://github.com/oicu/pg-cvs-mirror.git ://github.com/oicu/pg-cvs-mirror.git 

pgsql

– Has clean (so far) versions of all live back 
branches



 

Useful references

● http://book.git-scm.com (Git Community Book)
● http://progit.org (Pro Git)
● http://oreilly.com/catalog/9780596520137/ 

(Version Control with Git/ Loeliger) 
● http://wiki.postgresql.org/wiki/ 

Working_with_Git
● http://wiki.postgresql.org/wiki/ 

Switching_PostgreSQL_from_CVS_to_Git 

http://book.git-scm.com/
http://progit.org/
http://oreilly.com/catalog/9780596520137/
http://wiki.postgresql.org/wiki/
http://wiki.postgresql.org/wiki/


 

CVS work pattern – developer

● cvs checkout pgsql

● Repeat till done:
– Work

– Test

– Occasionally cvs update
● Hope it doesn't blow up your work
● If it does, fix it by hand



 

CVS developer problems

● Can't branch
● Can't easily checkpoint code or roll it back
● No merge support to speak of
● Have to fool cvs about added files for patch 

inclusion/deletion



 

Git work pattern – developer

● git clone repo-url

● git checkout -b mydev

● Repeat till done:
– Work

– Test

– Every so often, git commit -a

– Occasionally, git pull origin
● Fix conflicts with git mergetool

● Can add branches for parallel development



 

Advantages

● Checkpointing code
– Commit early and often

● Can branch multiple times for parallel lines of 
development

● Easy to abandon unpromising lines, or roll 
back to a previous commit



 

Developing on multiple platforms

● Make one local repo the master, set up a server 
on it, push to / pull from it

– e.g. parallel pg_restore
● Developed on Linux and Windows
● Syncing by hand was a pain
● Git would have made it much easier



 

Extracting diffs

● CVS:
– cvs diff -c > patchfile

● Git:
– git diff master devbr > patchfile

– No context diffs natively 



 

Setting up for context diffs

● Copy <http://anarazel.de/pg/git-external-diff> 
to your libexec/git-core directory

● git config diff.external git-external-diff

– Add –global if you want to use it 
everywhere.

– To ignore white space, use
DIFF_OPTS=-pcdw git diff ...

http://anarazel.de/pg/git-external-diff


 

Adding commands

● git config –global alias.co 
checkout

– Now can do:
● git co devbranch



 

Publishing work

● CVS: email patch place on web
● Git: can also push to a public repository



 

Buildfarm client changes

● Step 1: abstract out CVS specific code into an 
SCM object

● Step 2: create a git flavor of the SCM object



 

Buildfarm SCM object creation and 
access

● new() - class level factory method. Returns a 
member of appropriate subclass 
(PGBuild::SCM::CVS or PGBuild::SCM::Git)

● check_access() - sanity check for CVS 
pserver logins. Noop for git.



 

Buildfarm Ignored files

● find_ignore() - get the contents of 
.cvsignore files

– CVS: prune CVS directories from search

– Git: prune .git directory from search
● Open item: will we just convert .cvsignore to 

.gitignore when we move to git?



 

SCM Object Utilities

● get_build_path() returns a path where the 
build will occur 

– SCM dependant because it is different for CVS 
export method

● copy_source_required() - false if using 
CVS export method, otherwise true

● copy_source() - copies the source to the 
build path

– Git: avoids copying .git directory



 

SCM object API – CVS checkout

● If using export method, call cvs export

● Otherwise
– If source directory exists, call cvs update

– Else call cvs checkout $branch

– Parse output and possibly call cvs status to 
make sure directory is clean



 

SCM object API – Git checkout

● If source directory exists, call git pull

● Else:
– Call git clone

● Use -reference parameter if configured

– Call git checkout -b bf_$branch -t 
origin/$branch

● Call git status and parse output to make 
sure directory is clean.

– Unnecessary if we just cloned, but very cheap



 

SCM object API – file info

● find_changed() - get lists of what has 
changed since the last time we ran, and since 
the last time we ran successfully

– CVS: uses file modification time

– Git: uses 
git log –-since $ts [ --until $ts2 ]

● Much more robust



 

SCM object API file info 2

● get_versions() - turns a list of files into a 
list of {file version} pairs

– CVS: uses cvs status

– Git: uses info from git log already stashed 
away in find_changed()

● “version” ID is commit hash 
● Assumes that repo is cloned directly or 

indirectly from 
git://git.postgresql.org/git/postgresql.g
it



 

That's it!

● Should be easy to add another SCM if anyone 
ever wanted to

– Mercurial anyone? Monotone?



 

Buildfarm server changes

● Very minor
– alter table build_status add scm 

text, add scmurl text;

– Change pgstatus.pl script to populate fields 
from config setting

– Change show_log.pl script to point to git repo 
change set in changed files links if the scm is 
git.



 

Buildfarm config file changes

● New param scm 

– defaults to cvs

● New params scm_repo and scm_url

– default to community repo according to value of 
scm

● New param git_reference
– Used in git clone operation if set

● Legacy param cvsrepo still supported



 

Setting up a local repo clone

● Very desirable if you are running multiple 
buildfarm members / branches

● Also desirable to reduce proliferation of .git 
directories



 

Local repo in CVS:

● rsync anoncvs.postgresql.org::pgsql-cvs 
/home/cvsmirror/pg

– Called from cron

● If buildfarm members run on multiple 
machines:

– Set up a local pserver

– Point buildfarm members at local pserver

● Else
– Point buildfarm members at repo directory



 

Local repo in git

● Simple setup: make one clone on each 
buildfarm machine:

– git clone --mirror 
git://git.postgresql.org/git/postgresql.git 
/home/gitmirror/postgresql.git

– cd /home/gitmirror/postgresql.git && git fetch
● Called from cron or scheduler



 

Using simple git setup for buildfarm 
members

● Point each buildfarm member at local mirror:
– scm_repo => '/home/gitmirror/postgresql.git'

● Cloning local mirror uses hard links to 
.git dir pack objects



 

Making a tree of clones

● Clone community repo to one local machine
● Set up local git server

– Use git daemon or gitosis
● Clone local server bare to each buildfarm 

machine as in simple setup.
● Reduces external network traffic



 

So why isn't the buildfarm client 
code in git?

● Sanity check on server:
– Reject status from clients that are too old. Done 

by checking CVS version number.

● Git doesn't have version numbers
– “Duh! It's distributed!” 

● It does have commit Ids, but they are not 
ordered.

● Could use a commit date, but git won't fill in a 
date keyword!



 

Getting someone else's work

● Create a branch:
– git checkout -b devbranch master

● Or a release branch

● Apply patch from contributor
– patch -p 1 < patchfile

● git apply doesn't work with context diffs 

– git add {list of new files}

● Or, pull from a public repo:
– git pull remote-repo remote-branch



 

Intriguing possibilities

● Build unofficial branches
– Put your code on a repo (github?)

– Point your buildfarm member there

– Server requirements:
● Don't notify mailing lists
● Separate dashboard for unofficial brtanches



 

Committer / Tester / Developer 
workflow

● Repeat till done:
– Work, commit, test

– Commit a lot, it won't affect anyone else
● Publish patches made with git diff and 

optionally push to a public, non-authoritative 
repo



 

Committer workflow

● Switch back to main branch
– git checkout master

● Or release branch if working on a stable branch

● Make sure it's up to date
– git pull origin HEAD

● Merge in changes
– git merge –squash devbranch

● Send changes to server
– git push origin HEAD



 

Rebasing

● Rewriting the tree



 

Rebase result



 

And the moral of that is ...

● Do not ever rebase a commit that you have 
pushed elsewhere.

● For beginners with PostgreSQL workflow, 
rebasing is possibly not necessary at all.



 

How many trees?

● Strategy one:
– Keep one clone, switch between branches 

using checkout

● Strategy two:
– Keep one clone per live branch

– Keep a bare clone you fetch to, clone from 
there



 

Multi-tree recipe (h.t. Aidan van Dyk)

● git clone --bare --mirror 
git://committer.postgresql.org/PostgreSQL.git 
PostgreSQL.git

● git clone --reference PostgreSQL.git 
git://committer.postgresql.org/PostgreSQL.git master

● git clone --reference PostgreSQL.git 
git://committer.postgresql.org/PostgreSQL.git 
REL8_4_STABLE

● cd REL8_4_STABLE/ && git checkout --track -b 
REL8_4_STABLE origin/REL8_4_STABLE

● cd /path/to/base/PostgreSQL.git && git fetch

– Called from cron



 

Backporting

● Try git cherry-pick
– Only from the same tree

– If using many trees, pull in branch from other 
tree:

● git pull ../other_branch_dir branchname

– Other suggestions have been made, nobody 
seems terribly sure (see wiki discussion)

– Do we need to write some tools?
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