

Using Git with PostgreSQL

Andrew Dunstan

andrew@dunslane.net
andrew.dunstan@pgexperts.com

mailto:andrew@dunslane.net
mailto:andrew.dunstan@pgexperts.com

Playing along

● Community repository
– git clone git://git.postgresql.org/git/postgresql.gitgit://git.postgresql.org/git/postgresql.git

pgsql

● My repository:
– git clone gitgit://github.com/oicu/pg-cvs-mirror.git ://github.com/oicu/pg-cvs-mirror.git

pgsql

– Has clean (so far) versions of all live back
branches

Useful references

● http://book.git-scm.com (Git Community Book)
● http://progit.org (Pro Git)
● http://oreilly.com/catalog/9780596520137/

(Version Control with Git/ Loeliger)
● http://wiki.postgresql.org/wiki/

Working_with_Git
● http://wiki.postgresql.org/wiki/

Switching_PostgreSQL_from_CVS_to_Git

http://book.git-scm.com/
http://progit.org/
http://oreilly.com/catalog/9780596520137/
http://wiki.postgresql.org/wiki/
http://wiki.postgresql.org/wiki/

CVS work pattern – developer

● cvs checkout pgsql

● Repeat till done:
– Work

– Test

– Occasionally cvs update
● Hope it doesn't blow up your work
● If it does, fix it by hand

CVS developer problems

● Can't branch
● Can't easily checkpoint code or roll it back
● No merge support to speak of
● Have to fool cvs about added files for patch

inclusion/deletion

Git work pattern – developer

● git clone repo-url

● git checkout -b mydev

● Repeat till done:
– Work

– Test

– Every so often, git commit -a

– Occasionally, git pull origin
● Fix conflicts with git mergetool

● Can add branches for parallel development

Advantages

● Checkpointing code
– Commit early and often

● Can branch multiple times for parallel lines of
development

● Easy to abandon unpromising lines, or roll
back to a previous commit

Developing on multiple platforms

● Make one local repo the master, set up a server
on it, push to / pull from it

– e.g. parallel pg_restore
● Developed on Linux and Windows
● Syncing by hand was a pain
● Git would have made it much easier

Extracting diffs

● CVS:
– cvs diff -c > patchfile

● Git:
– git diff master devbr > patchfile

– No context diffs natively

Setting up for context diffs

● Copy <http://anarazel.de/pg/git-external-diff>
to your libexec/git-core directory

● git config diff.external git-external-diff

– Add –global if you want to use it
everywhere.

– To ignore white space, use
DIFF_OPTS=-pcdw git diff ...

http://anarazel.de/pg/git-external-diff

Adding commands

● git config –global alias.co
checkout

– Now can do:
● git co devbranch

Publishing work

● CVS: email patch place on web
● Git: can also push to a public repository

Buildfarm client changes

● Step 1: abstract out CVS specific code into an
SCM object

● Step 2: create a git flavor of the SCM object

Buildfarm SCM object creation and
access

● new() - class level factory method. Returns a
member of appropriate subclass
(PGBuild::SCM::CVS or PGBuild::SCM::Git)

● check_access() - sanity check for CVS
pserver logins. Noop for git.

Buildfarm Ignored files

● find_ignore() - get the contents of
.cvsignore files

– CVS: prune CVS directories from search

– Git: prune .git directory from search
● Open item: will we just convert .cvsignore to

.gitignore when we move to git?

SCM Object Utilities

● get_build_path() returns a path where the
build will occur

– SCM dependant because it is different for CVS
export method

● copy_source_required() - false if using
CVS export method, otherwise true

● copy_source() - copies the source to the
build path

– Git: avoids copying .git directory

SCM object API – CVS checkout

● If using export method, call cvs export

● Otherwise
– If source directory exists, call cvs update

– Else call cvs checkout $branch

– Parse output and possibly call cvs status to
make sure directory is clean

SCM object API – Git checkout

● If source directory exists, call git pull

● Else:
– Call git clone

● Use -reference parameter if configured

– Call git checkout -b bf_$branch -t
origin/$branch

● Call git status and parse output to make
sure directory is clean.

– Unnecessary if we just cloned, but very cheap

SCM object API – file info

● find_changed() - get lists of what has
changed since the last time we ran, and since
the last time we ran successfully

– CVS: uses file modification time

– Git: uses
git log –-since $ts [--until $ts2]

● Much more robust

SCM object API file info 2

● get_versions() - turns a list of files into a
list of {file version} pairs

– CVS: uses cvs status

– Git: uses info from git log already stashed
away in find_changed()

● “version” ID is commit hash
● Assumes that repo is cloned directly or

indirectly from
git://git.postgresql.org/git/postgresql.g
it

That's it!

● Should be easy to add another SCM if anyone
ever wanted to

– Mercurial anyone? Monotone?

Buildfarm server changes

● Very minor
– alter table build_status add scm

text, add scmurl text;

– Change pgstatus.pl script to populate fields
from config setting

– Change show_log.pl script to point to git repo
change set in changed files links if the scm is
git.

Buildfarm config file changes

● New param scm

– defaults to cvs

● New params scm_repo and scm_url

– default to community repo according to value of
scm

● New param git_reference
– Used in git clone operation if set

● Legacy param cvsrepo still supported

Setting up a local repo clone

● Very desirable if you are running multiple
buildfarm members / branches

● Also desirable to reduce proliferation of .git
directories

Local repo in CVS:

● rsync anoncvs.postgresql.org::pgsql-cvs
/home/cvsmirror/pg

– Called from cron

● If buildfarm members run on multiple
machines:

– Set up a local pserver

– Point buildfarm members at local pserver

● Else
– Point buildfarm members at repo directory

Local repo in git

● Simple setup: make one clone on each
buildfarm machine:

– git clone --mirror
git://git.postgresql.org/git/postgresql.git
/home/gitmirror/postgresql.git

– cd /home/gitmirror/postgresql.git && git fetch
● Called from cron or scheduler

Using simple git setup for buildfarm
members

● Point each buildfarm member at local mirror:
– scm_repo => '/home/gitmirror/postgresql.git'

● Cloning local mirror uses hard links to
.git dir pack objects

Making a tree of clones

● Clone community repo to one local machine
● Set up local git server

– Use git daemon or gitosis
● Clone local server bare to each buildfarm

machine as in simple setup.
● Reduces external network traffic

So why isn't the buildfarm client
code in git?

● Sanity check on server:
– Reject status from clients that are too old. Done

by checking CVS version number.

● Git doesn't have version numbers
– “Duh! It's distributed!”

● It does have commit Ids, but they are not
ordered.

● Could use a commit date, but git won't fill in a
date keyword!

Getting someone else's work

● Create a branch:
– git checkout -b devbranch master

● Or a release branch

● Apply patch from contributor
– patch -p 1 < patchfile

● git apply doesn't work with context diffs

– git add {list of new files}

● Or, pull from a public repo:
– git pull remote-repo remote-branch

Intriguing possibilities

● Build unofficial branches
– Put your code on a repo (github?)

– Point your buildfarm member there

– Server requirements:
● Don't notify mailing lists
● Separate dashboard for unofficial brtanches

Committer / Tester / Developer
workflow

● Repeat till done:
– Work, commit, test

– Commit a lot, it won't affect anyone else
● Publish patches made with git diff and

optionally push to a public, non-authoritative
repo

Committer workflow

● Switch back to main branch
– git checkout master

● Or release branch if working on a stable branch

● Make sure it's up to date
– git pull origin HEAD

● Merge in changes
– git merge –squash devbranch

● Send changes to server
– git push origin HEAD

Rebasing

● Rewriting the tree

Rebase result

And the moral of that is ...

● Do not ever rebase a commit that you have
pushed elsewhere.

● For beginners with PostgreSQL workflow,
rebasing is possibly not necessary at all.

How many trees?

● Strategy one:
– Keep one clone, switch between branches

using checkout

● Strategy two:
– Keep one clone per live branch

– Keep a bare clone you fetch to, clone from
there

Multi-tree recipe (h.t. Aidan van Dyk)

● git clone --bare --mirror
git://committer.postgresql.org/PostgreSQL.git
PostgreSQL.git

● git clone --reference PostgreSQL.git
git://committer.postgresql.org/PostgreSQL.git master

● git clone --reference PostgreSQL.git
git://committer.postgresql.org/PostgreSQL.git
REL8_4_STABLE

● cd REL8_4_STABLE/ && git checkout --track -b
REL8_4_STABLE origin/REL8_4_STABLE

● cd /path/to/base/PostgreSQL.git && git fetch

– Called from cron

Backporting

● Try git cherry-pick
– Only from the same tree

– If using many trees, pull in branch from other
tree:

● git pull ../other_branch_dir branchname

– Other suggestions have been made, nobody
seems terribly sure (see wiki discussion)

– Do we need to write some tools?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

