Replacing GEQO

Join ordering via Simulated Annealing

Jan Urbanski

j.urbanski@wulczer.org

University of Warsaw / Flumotion

May 21, 2010

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010

For those following at home

Getting the slides

$ wget http://wulczer.org/saio.pdf

Trying it out

$ git clone git://wulczer.org/saio.git
$ cd saio &% make

$ psql

=# load ’.../saio.so’;

Do not try to compile against an assert-enabled build. Do not be scared
by lots of ugly code.

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 2 /46

The problem
m Determining join order for large queries
m GEQO, the genetic query optimiser

The solution
m Simulated Annealing overview
m PostgreSQL specifics
m Query tree transformations

The results
m Comparison with GEQO

The future
m Development focuses

The end

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010

The problem Determining join order for large queries

Outline

The problem
m Determining join order for large queries

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 4 /46

The problem Determining join order for large queries

Getting the optimal join order

» part of of planning a query is determining the order in which relations
are joined

» it is not unusual to have queries that join lots of relations

» JOIN and subquery flattening contributes to the number or relations
to join

» automatically generated queries can involve very large joins

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 5/ 46

The problem Determining join order for large queries

Problems with join ordering

>

finding the optimal join order is an NP-hard problem

v

considering all possible ways to do a join can exhaust available
memory

v

not all join orders are valid, because of:

» outer joins enforcing a certain join order
> IN and EXISTS clauses that get converted to joins

v

joins with restriction clauses are preferable to Cartesian joins

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010

The problem GEQO, the genetic query optimiser

Outline

The problem

m GEQO, the genetic query optimiser

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 7/ 46

The problem GEQO, the genetic query optimiser

Randomisation helps

» PostgreSQL switches from exhaustive search to a randomised
algorithm after a certain limit

» GEQO starts by joining the relations in any order
» and then proceeds to randomly change the join order

» genetic algorithm techniques are used to choose the cheapest join
order

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 8 /46

The problem GEQO, the genetic query optimiser

Problems with GEQO

» has lots of dead/experimental code

» there is a TODO item to remove it

» nobody really cares about it

> is an adaptation of an algorithm to solve TSP, not necessarily best
suited to join ordering

> requires some cooperation from the planner, which violates
abstractions

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 9 /46

The solution Simulated Annealing overview

Outline

The solution
m Simulated Annealing overview

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 10 / 46

The solution Simulated Annealing overview

Previous work

> numerous papers on optimising join order have been written

» Adriano Lange implemented a prototype using a variation of
Simulated Annealing

» other people discussed the issue on ~hackers

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010

The solution Simulated Annealing overview

What is Simulated Annealing

Annealing (...) is a process
that produces conditions by
heating to above the
re-crystallisation temperature
and maintaining a suitable
temperature, and then cooling.
— Wikipedia

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 12 / 46

The solution Simulated Annealing overview

The SA Algorithm cont.

> the system starts with an initial temperature and a random state

» uphill moves are accepted with probability that depends on the
current temperature

probability of accepting an uphill move

costprev —costpew
p = e temperature

» moves are made until equilibrium is reached
» temperature is gradually lowered

> once the system is frozen, the algorithm ends

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 13 / 46

The solution Simulated Annealing overview

The SA algorithm

Simulated neali

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 14 / 46

The solution Simulated Annealing overview

The SA algorithm

Simulated Anneali

state = random_state()

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 14 / 46

The solution Simulated Annealing overview

The SA algorithm

Simulated Annealing

state = random_state()

new_state = random_move()
if (acceptable(new_state))
state = new_state

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 14 / 46

The solution Simulated Annealing overview

The SA algorithm

Simulated Annealing

state = random_state()

do {
new_state = random_move ()
if (acceptable(new_state))
state = new_state
+
while (!equilibrium())

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 14 / 46

The solution Simulated Annealing overview

The SA algorithm

Simulated Annealing

state = random_state()

do {
new_state = random move ()
if (acceptable(new_state))
state = new_state
}
while (!equilibrium())
reduce_temperature ()

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 14 / 46

The solution Simulated Annealing overview

The SA algorithm

Simulated Annealing

state = random_state()

do {
do {
new_state = random move ()
if (acceptable(new_state))
state = new_state
}
while (!equilibrium())
reduce_temperature ()
}

while (!frozen())
return state

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 14 / 46

The solution Simulated Annealing overview

The SA Algorithm cont.

Implementing Simulated Annealing means solving the following problems:

v

finding an initial state

» generating subsequent states

v

defining an acceptance function

v

determining the equilibrium condition

v

suitably lowering the temperature

v

determining the freeze conditions

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010

The solution Simulated Annealing overview

The SA algorithm

Simulated Annealing

state = random_state()

do {
do {
new_state = random move ()
if (acceptable(new_state))
state = new_state
}
while (!equilibrium())
reduce_temperature ()
}

while (!frozen())
return state

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 16 / 46

The solution Simulated Annealing overview

The SA algorithm

Simulated Annealing

state = random_state()

do {
do {
new_state = random move ()
if (acceptable(new_state))
state = new_state
}
while (!equilibrium())
reduce_temperature ()
}

while (!frozen())
return state

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 16 / 46

The solution Simulated Annealing overview

The SA algorithm

Simulated Annealing

state = random_state()

do {
do {
new_state = random move ()
if (acceptable(new_state))
state = new_state
}
while (!equilibrium())
reduce_temperature ()
}

while (!frozen())
return state

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 16 / 46

The solution Simulated Annealing overview

The SA algorithm

Simulated Annealing

state = random_state()

do {
do {
new_state = random move ()
if (acceptable(new_state))
state = new_state
}
while (!equilibrium())
reduce_temperature ()
}

while (!frozen())
return state

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 16 / 46

The solution Simulated Annealing overview

The SA algorithm

Simulated Annealing

state = random_state()

do {
do {
new_state = random move ()
if (acceptable(new_state))
state = new_state
}
while (lequilibrium())
reduce_temperature ()
}

while (!frozen())
return state

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 16 / 46

The solution Simulated Annealing overview

The SA algorithm

Simulated Annealing

state = random_state()

do {
do {
new_state = random move ()
if (acceptable(new_state))
state = new_state
}
while (lequilibrium())
reduce_temperature ()
}

while (!frozen())
return state

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 16 / 46

The solution Simulated Annealing overview

The SA algorithm

Simulated Annealing

state = random_state()

do {
do {
new_state = random move ()
if (acceptable(new_state))
state = new_state
}
while (lequilibrium())
reduce_temperature ()
}

while (!frozen())
return state

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 16 / 46

The solution Simulated Annealing overview

A visual example

S
- b

Jan Urbariski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 17 / 46

The solution PostgreSQL specifics

Outline

The solution

m PostgreSQL specifics

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 18 / 46

The solution PostgreSQL specifics

Differences from the original algorithm

\4

PostgreSQL always considers all possible paths for a relation

» make_join_rel is symmetrical

v

you can have join order constraints (duh)

v

the planner is keeping a list of all relations...

» ... and sometimes turns it into a hash

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010

The solution PostgreSQL specifics

Join order representation

» SAIO represents joins as query trees

» chosen to mimic the original algorithm more closely
> each state is a query tree

> leaves are basic relations

> internal nodes are joinrels

> the joinrel in the root of the tree is the current result

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010

The solution PostgreSQL specifics

Query trees

(L2345 6)
111979996936.94
(L2345)
2544995460.94
(123 4)
49193452.94
@
445.00
(2 3)
12089.77

Example query tree for a six

relation join.
(12 3)

765468.94

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 21 / 46

The solution PostgreSQL specifics

Query trees cont.

Some useful query tree properties:

» symmetrical (no difference between left and right child)

(123)
765468.94
(23)
12089.77

(123)
TE5468.94

(23)

12089.77

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 22 / 46

The solution PostgreSQL specifics

Query trees con

Some useful query tree properties:

» symmetrical (no difference between left and right child)

» fully determined by the tree structure and relations in leaves

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 22 / 46

The solution PostgreSQL specifics

Query trees con

Some useful query tree properties:

» symmetrical (no difference between left and right child)
» fully determined by the tree structure and relations in leaves

» each node has a cost

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 22 / 46

The solution Query tree transformations

Outline

The solution

m Query tree transformations

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 23 / 46

The solution Query tree transformations

Implementing Simulated Annealing means solving the following problems:

» finding an initial state

» generating subsequent states

v

defining an acceptance function

\4

determining the equilibrium condition

\4

suitably lowering the temperature

v

determining the freeze conditions

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 24 / 46

The solution Query tree transformations

Implementing Simulated Annealing means solving the following problems:

» finding an initial state

> generating subsequent states

» defining an acceptance function

» determining the equilibrium condition
» suitably lowering the temperature

» determining the freeze conditions

Some are easy

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 24 / 46

The solution Query tree transformations

Implementing Simulated Annealing means solving the following problems:

» finding an initial state

» generating subsequent states

» defining an acceptance function

» determining the equilibrium condition
» suitably lowering the temperature

» determining the freeze conditions

Some are easy, some are hard

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 24 / 46

The solution Query tree transformations

The easy problems - initial state

Finding an initial state

Make base relations into one-node trees, keep merging them on joins with
restriction clauses, forcefully merge the remaining ones using Cartesian
joins. Results in a query tree that is as left-deep as possible.

This is exactly what GEQO does.

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 25 / 46

The solution Query tree transformations

The easy problems - temperature

The acceptance function

A uphill move is accepted with the probability that depends on the current
temperature.

costprey — costpew

P(accepted) = e temperature

Lowering the temperature

The initial temperature depends on the number of initial relations and
drops geometrically.

initial _temperature = | x initial_rels

new _temperature = temperature x* K

where
0< K<l

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 26 / 46

The solution Query tree transformations

The easy problems - equilibrium and freezing

Equilibrium condition

Equilibrium is reached after a fixed number of moves that depend on the
number of initial relations.

moves_to_equilibrium = N x initial _rels

Freezing condition

The system freezes if temperature falls below 1 and a fixed number of
consecutive moves has failed.

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 27 / 46

The solution Query tree transformations

Move types

The difficult part seems to be generating subsequent states.

» a number of move generating approaches can be taken

» the most costly operations is creating a joinrel, especially computing
paths

» need to free memory between steps, otherwise risk overrunning

» need to deal with planner scribbling on its structures when creating
joinrels

» how to efficiently sample the solution space?

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 28 / 46

The solution Query tree transformations

SAIO move

» randomly choose two nodes from the query tree
» swap the subtrees around

» recalculate the whole query tree

» if it cannot be done, the move fails

» check if the cost of the new tree is acceptable

» if not, the move fails

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010

The solution Query tree transformations

SAIO move example

Take a tree,

Jan Urbanski j.urbanski@wulczer.org (U i May 21, 2010 30 / 46

The solution Query tree transformations

SAIO move example

Take a tree, choose two nodes,

23)
@ G

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010

The solution Query tree transformations

SAIO move example

Take a tree, choose two nodes, swap them around

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 30 / 46

The solution Query tree transformations

SAIO move problems

» choosing a node narrows down the possible choices for the second
node

» can't choose descendant node (how would that work?)
> can't choose ancestor node (for the same reason)
» can't choose sibling node (because of symmetry)

» the changes to the tree are big, the algorithm takes “large steps”
» if the resulting query tree is invalid, lots of work is thrown away

> any join failure results in the whole move failing, so it doesn’t explore
the solution space very deeply

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 31/ 46

The solution Query tree transformations

SAIO pivot

» change (A join B) join Cinto A join (B join C)
> in practise, choose a node at random
» swap the subtrees of one of its children and the sibling’s

» continue trying such pivots until all nodes have been tried

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010

The solution Query tree transformations

SAIO pivot example

Take a tree,

Jan Urbanski j.urbanski@wulczer.org (U i May 21, 2010 33/ 46

The solution Query tree transformations

SAIO pivot example

Take a tree, choose a node,

‘\\
\ <

(2 3)

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 33/ 46

The solution Query tree transformations

SAIO pivot example

Take a tree, choose a node, pivot,

(123)

= (@) (e
()/

\

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 33/ 46

The solution Query tree transformations

SAIO pivot example

Take a tree, choose a node, pivot, choose another,

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 33/ 46

The solution Query tree transformations

SAIO pivot example

Take a tree, choose a node, pivot, choose another, pivot ...

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 33/ 46

The solution Query tree transformations

SAIO pivot problems

» each move explores a lot of possibilities, but requires lots of
computation
» does not introduce big changes, which sometimes are needed to break
pessimal joins
» actually, it's not obvious that the solution space is smooth wrt costs
» small changes in the structure may result it gigantic changes in costs
» might want to augment the cost assessment function (number of
non-cross joins?)

> the same join might be recalculated many times in each step

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 34 / 46

The solution Query tree transformations

SAIO recalc

> essentially the same as move
> but keeps all the relations built between moves

» recalculate the joins from the chosen nodes up to the common
ancestor

» if it succeeded, recalculate the nodes from the common ancestor up
to the root node

> avoids pointless recalculations when joins fail
» each query tree node has its own memory context

» needs to remove individual joinrels from the planner (nasty!)

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 35 / 46

The solution Query tree transformations

SAIO recalc example

Take a tree,

Jan Urbanski j.urbanski@wulczer.org (U i May 21, 2010 36 / 46

The solution Query tree transformations

SAIO recalc example

Take a tree, choose two nodes,

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010

The solution Query tree transformations

SAIO recalc example

Take a tree, choose two nodes, swap them around,

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 36 / 46

The solution Query tree transformations

SAIO recalc example

Take a tree, choose two nodes, swap them around, recalculate up to the
common ancestor,

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 36 / 46

The solution Query tree transformations

SAIO recalc example

Take a tree, choose two nodes, swap them around, recalculate up to the
common ancestor, just discard the built joinrels if failure,

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 36 / 46

The solution Query tree transformations

SAIO recalc example

Take a tree, choose two nodes, swap them around, recalculate up to the
common ancestor, just discard the built joinrels if failure, recalculate the
rest of the relations

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010

The solution Query tree transformations

SAIO recalc problems

»

does really nasty hacks

v

does not speed things up as much as it should

» does not solve the problem of failing, it just makes failures cheaper

v

because the trees are usually left-deep, the benefits from partial
recalculation are not as big

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 37 / 46

The results Comparison with GEQO

Outline

The results
m Comparison with GEQO

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 38 / 46

The results

Comparison with GEQO

Moderately big query

Collapse limits set to 100. Move algorithm used is recalc.

algorithm equilibrium loops temp reduction avg cost avg time
GEQO n/a n/a 1601.540000 0.54379
SAIO 4 0.6 1623.874000 0.42599
SAIO 6 0.9 1617.341000 3.69639
SAIO 8 0.7 1618.838000 1.44605
SAIO 12 0.4 1627.873000 0.87609

Jan Urbanski j.urbanski@wulczer.org (Un

Replacing GEQO

May 21, 2010 39 / 46

The results

Comparison with GEQO

Very big query

Collapse limits set to 100. Move algorithm used is recalc.

algorithm equilibrium loops temp reduction avg cost avg time
GEQO n/a n/a 22417.210000 777.20033
SAIO 4 0.6 21130.063000 145.27570
SAIO 6 0.4 21218.134000 125.08545
SAIO 6 0.6 21131.333000 240.70522
SAIO 8 0.4 21250.160000 179.34261

Jan Urbanski j.urbanski@wulczer.org (Un

Replacing GEQO

May 21, 2010 40 / 46

The future Development focuses

Outline

The future
m Development focuses

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 41 / 46

The future Development focuses

What the future brings

»

MSc thesis :0)

smarter tree transformation methods

v

v

less useless computation

v

perhaps some support from the core infrastructure
faster and higher quality results than GEQO

\4

\4

git://wulczer.org/saio.git

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010

The future Development focuses

Acknowledgements

>

Adriano Lange, the author of the TWOPO implementation

v

Andres Freund, for providing the craziest test query ever

v

Robert Haas, for providing a slightly less crazy test query

v

dr Krzysztof Stencel, for help and guidance

v

Flumotion Services, for letting me mess with the PG planner instead
of doing work

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 43 / 46

The future Development focuses

Further reading

[& Yannis E. loannidis and Eugene Wong.

Query optimization by simulated annealing.
SIGMOD Rec., 16(3):9-22, 1987.

[3] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper.

Heuristic and randomized optimization for the join ordering problem.
The VLDB Journal, 6(3):191-208, 1997.

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO

May 21, 2010 44 / 46

The end Questions

Questions?

Jan Urbanski j.urbanski@wulczer.org Replacing GEQO May 21, 2010 45 / 46

(12345 6)
1119799965936.594
(12345)
2544595460.94
(123 4)
49193452 .94

	The problem
	Determining join order for large queries
	GEQO, the genetic query optimiser

	The solution
	Simulated Annealing overview
	PostgreSQL specifics
	Query tree transformations

	The results
	Comparison with GEQO

	The future
	Development focuses

	The end
	

	Appendix

