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For those following at home

Getting the slides

$ wget http://wulczer.org/saio.pdf

Trying it out

$ git clone git://wulczer.org/saio.git
$ cd saio &% make

$ psql

=# load ’.../saio.so’;

Do not try to compile against an assert-enabled build. Do not be scared
by lots of ugly code.
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The problem Determining join order for large queries

Getting the optimal join order

» part of of planning a query is determining the order in which relations
are joined

» it is not unusual to have queries that join lots of relations

» JOIN and subquery flattening contributes to the number or relations
to join

» automatically generated queries can involve very large joins
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The problem Determining join order for large queries

Problems with join ordering

>

finding the optimal join order is an NP-hard problem

v

considering all possible ways to do a join can exhaust available
memory

v

not all join orders are valid, because of:

» outer joins enforcing a certain join order
> IN and EXISTS clauses that get converted to joins

v

joins with restriction clauses are preferable to Cartesian joins
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The problem GEQO, the genetic query optimiser

Randomisation helps

» PostgreSQL switches from exhaustive search to a randomised
algorithm after a certain limit

» GEQO starts by joining the relations in any order
» and then proceeds to randomly change the join order

» genetic algorithm techniques are used to choose the cheapest join
order
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The problem GEQO, the genetic query optimiser

Problems with GEQO

» has lots of dead/experimental code

» there is a TODO item to remove it

» nobody really cares about it

> is an adaptation of an algorithm to solve TSP, not necessarily best
suited to join ordering

> requires some cooperation from the planner, which violates
abstractions
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The solution Simulated Annealing overview

Previous work

> numerous papers on optimising join order have been written

» Adriano Lange implemented a prototype using a variation of
Simulated Annealing

» other people discussed the issue on ~hackers
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The solution Simulated Annealing overview

What is Simulated Annealing

Annealing (...) is a process
that produces conditions by
heating to above the
re-crystallisation temperature
and maintaining a suitable
temperature, and then cooling.
— Wikipedia
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The solution Simulated Annealing overview

The SA Algorithm cont.

> the system starts with an initial temperature and a random state

» uphill moves are accepted with probability that depends on the
current temperature

probability of accepting an uphill move

costprev —costpew
p = e temperature

» moves are made until equilibrium is reached
» temperature is gradually lowered

> once the system is frozen, the algorithm ends
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The solution Simulated Annealing overview

The SA algorithm

Simulated Anneali

state = random_state()
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The solution Simulated Annealing overview

The SA algorithm

Simulated Annealing

state = random_state()

new_state = random_move()
if (acceptable(new_state))
state = new_state
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The solution Simulated Annealing overview

The SA algorithm

Simulated Annealing

state = random_state()

do {
new_state = random_move ()
if (acceptable(new_state))
state = new_state
+
while (!equilibrium())
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The solution Simulated Annealing overview

The SA algorithm

Simulated Annealing

state = random_state()

do {
new_state = random move ()
if (acceptable(new_state))
state = new_state
}
while (!equilibrium())
reduce_temperature ()

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 14 / 46



The solution Simulated Annealing overview

The SA algorithm

Simulated Annealing

state = random_state()

do {
do {
new_state = random move ()
if (acceptable(new_state))
state = new_state
}
while (!equilibrium())
reduce_temperature ()
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while (!frozen())
return state
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The solution Simulated Annealing overview

The SA Algorithm cont.

Implementing Simulated Annealing means solving the following problems:

v

finding an initial state

» generating subsequent states

v

defining an acceptance function

v

determining the equilibrium condition

v

suitably lowering the temperature

v

determining the freeze conditions
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The SA algorithm

Simulated Annealing

state = random_state()

do {
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new_state = random move ()
if (acceptable(new_state))
state = new_state
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reduce_temperature ()
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while (!frozen())
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The solution Simulated Annealing overview

The SA algorithm

Simulated Annealing

state = random_state()

do {
do {
new_state = random move ()
if (acceptable(new_state))
state = new_state
}
while (lequilibrium())
reduce_temperature ()
}

while (!frozen())
return state
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The solution Simulated Annealing overview

A visual example

S
- b
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The solution PostgreSQL specifics

Differences from the original algorithm

\4

PostgreSQL always considers all possible paths for a relation

» make_join_rel is symmetrical

v

you can have join order constraints (duh)

v

the planner is keeping a list of all relations...

» ... and sometimes turns it into a hash
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The solution PostgreSQL specifics

Join order representation

» SAIO represents joins as query trees

» chosen to mimic the original algorithm more closely
> each state is a query tree

> leaves are basic relations

> internal nodes are joinrels

> the joinrel in the root of the tree is the current result

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010



The solution PostgreSQL specifics

Query trees

(L2345 6)
111979996936.94
(L2345)
2544995460.94
(123 4)
49193452.94
@
445.00
(2 3)
12089.77

Example query tree for a six

relation join.
(12 3)

765468.94
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The solution PostgreSQL specifics

Query trees cont.

Some useful query tree properties:

» symmetrical (no difference between left and right child)

(123)
765468.94
(23)
12089.77

(123)
TE5468.94

(23)

12089.77
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The solution PostgreSQL specifics

Query trees con

Some useful query tree properties:

» symmetrical (no difference between left and right child)

» fully determined by the tree structure and relations in leaves
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The solution PostgreSQL specifics

Query trees con

Some useful query tree properties:

» symmetrical (no difference between left and right child)
» fully determined by the tree structure and relations in leaves

» each node has a cost
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The solution Query tree transformations

Implementing Simulated Annealing means solving the following problems:

» finding an initial state

» generating subsequent states

v

defining an acceptance function

\4

determining the equilibrium condition

\4

suitably lowering the temperature

v

determining the freeze conditions
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The solution Query tree transformations

Implementing Simulated Annealing means solving the following problems:

» finding an initial state

> generating subsequent states

» defining an acceptance function

» determining the equilibrium condition
» suitably lowering the temperature

» determining the freeze conditions

Some are easy
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The solution Query tree transformations

Implementing Simulated Annealing means solving the following problems:

» finding an initial state

» generating subsequent states

» defining an acceptance function

» determining the equilibrium condition
» suitably lowering the temperature

» determining the freeze conditions

Some are easy, some are hard
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The solution Query tree transformations

The easy problems - initial state

Finding an initial state

Make base relations into one-node trees, keep merging them on joins with
restriction clauses, forcefully merge the remaining ones using Cartesian
joins. Results in a query tree that is as left-deep as possible.

This is exactly what GEQO does.
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The solution Query tree transformations

The easy problems - temperature

The acceptance function

A uphill move is accepted with the probability that depends on the current
temperature.

costprey — costpew

P(accepted) = e temperature

Lowering the temperature

The initial temperature depends on the number of initial relations and
drops geometrically.

initial _temperature = | x initial_rels

new _temperature = temperature x* K

where
0< K<l
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The solution Query tree transformations

The easy problems - equilibrium and freezing

Equilibrium condition

Equilibrium is reached after a fixed number of moves that depend on the
number of initial relations.

moves_to_equilibrium = N x initial _rels

Freezing condition

The system freezes if temperature falls below 1 and a fixed number of
consecutive moves has failed.
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The solution Query tree transformations

Move types

The difficult part seems to be generating subsequent states.

» a number of move generating approaches can be taken

» the most costly operations is creating a joinrel, especially computing
paths

» need to free memory between steps, otherwise risk overrunning

» need to deal with planner scribbling on its structures when creating
joinrels

» how to efficiently sample the solution space?
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The solution Query tree transformations

SAIO move

» randomly choose two nodes from the query tree
» swap the subtrees around

» recalculate the whole query tree

» if it cannot be done, the move fails

» check if the cost of the new tree is acceptable

» if not, the move fails
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The solution Query tree transformations

SAIO move example

Take a tree,
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The solution Query tree transformations

SAIO move example

Take a tree, choose two nodes,

23)
@ G
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The solution Query tree transformations

SAIO move example

Take a tree, choose two nodes, swap them around
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The solution Query tree transformations

SAIO move problems

» choosing a node narrows down the possible choices for the second
node

» can't choose descendant node (how would that work?)
> can't choose ancestor node (for the same reason)
» can't choose sibling node (because of symmetry)

» the changes to the tree are big, the algorithm takes “large steps”
» if the resulting query tree is invalid, lots of work is thrown away

> any join failure results in the whole move failing, so it doesn’t explore
the solution space very deeply
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The solution Query tree transformations

SAIO pivot

» change (A join B) join Cinto A join (B join C)
> in practise, choose a node at random
» swap the subtrees of one of its children and the sibling’s

» continue trying such pivots until all nodes have been tried
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The solution Query tree transformations

SAIO pivot example

Take a tree,
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The solution Query tree transformations

SAIO pivot example

Take a tree, choose a node,

‘\\
\ <

(2 3)
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The solution Query tree transformations

SAIO pivot example

Take a tree, choose a node, pivot,

(123)

= (@) (e
()/

\
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The solution Query tree transformations

SAIO pivot example

Take a tree, choose a node, pivot, choose another,
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The solution Query tree transformations

SAIO pivot example

Take a tree, choose a node, pivot, choose another, pivot ...
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The solution Query tree transformations

SAIO pivot problems

» each move explores a lot of possibilities, but requires lots of
computation
» does not introduce big changes, which sometimes are needed to break
pessimal joins
» actually, it's not obvious that the solution space is smooth wrt costs
» small changes in the structure may result it gigantic changes in costs
» might want to augment the cost assessment function (number of
non-cross joins?)

> the same join might be recalculated many times in each step
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The solution Query tree transformations

SAIO recalc

> essentially the same as move
> but keeps all the relations built between moves

» recalculate the joins from the chosen nodes up to the common
ancestor

» if it succeeded, recalculate the nodes from the common ancestor up
to the root node

> avoids pointless recalculations when joins fail
» each query tree node has its own memory context

» needs to remove individual joinrels from the planner (nasty!)
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The solution Query tree transformations

SAIO recalc example

Take a tree,
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The solution Query tree transformations

SAIO recalc example

Take a tree, choose two nodes,
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The solution Query tree transformations

SAIO recalc example

Take a tree, choose two nodes, swap them around,
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The solution Query tree transformations

SAIO recalc example

Take a tree, choose two nodes, swap them around, recalculate up to the
common ancestor,
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The solution Query tree transformations

SAIO recalc example

Take a tree, choose two nodes, swap them around, recalculate up to the
common ancestor, just discard the built joinrels if failure,
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The solution Query tree transformations

SAIO recalc example

Take a tree, choose two nodes, swap them around, recalculate up to the
common ancestor, just discard the built joinrels if failure, recalculate the
rest of the relations
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The solution Query tree transformations

SAIO recalc problems

»

does really nasty hacks

v

does not speed things up as much as it should

» does not solve the problem of failing, it just makes failures cheaper

v

because the trees are usually left-deep, the benefits from partial
recalculation are not as big
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The results

Comparison with GEQO

Moderately big query

Collapse limits set to 100. Move algorithm used is recalc.

algorithm  equilibrium loops temp reduction avg cost avg time
GEQO n/a n/a 1601.540000 0.54379
SAIO 4 0.6 1623.874000 0.42599
SAIO 6 0.9 1617.341000 3.69639
SAIO 8 0.7 1618.838000 1.44605
SAIO 12 0.4 1627.873000 0.87609
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The results

Comparison with GEQO

Very big query

Collapse limits set to 100. Move algorithm used is recalc.

algorithm  equilibrium loops temp reduction avg cost avg time
GEQO n/a n/a 22417.210000 777.20033
SAIO 4 0.6 21130.063000 145.27570
SAIO 6 0.4 21218.134000 125.08545
SAIO 6 0.6 21131.333000 240.70522
SAIO 8 0.4 21250.160000 179.34261
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The future Development focuses

What the future brings

»

MSc thesis :0)

smarter tree transformation methods

v

v

less useless computation

v

perhaps some support from the core infrastructure
faster and higher quality results than GEQO

\4

\4

git://wulczer.org/saio.git
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The future Development focuses

Acknowledgements

>

Adriano Lange, the author of the TWOPO implementation

v

Andres Freund, for providing the craziest test query ever

v

Robert Haas, for providing a slightly less crazy test query

v

dr Krzysztof Stencel, for help and guidance

v

Flumotion Services, for letting me mess with the PG planner instead
of doing work

Jan Urbanski j.urbanski@wulczer.org (Un Replacing GEQO May 21, 2010 43 / 46



The future Development focuses
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The end Questions

Questions?
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