Realistic Load [lesting

Setting up a realistic testing environment
using PostgreSQL and Python

Who Are You?

DBA—Architecture
DBA—Administration
Database Developers
Application Developers
Web Developers

Managers
Other?

Why Are You Here?

You want a process of testing to gain
confidence in application release

You want to have proof of meeting
performance goals to stakeholders

You have an SLA that demands certain
performance expectations

You want to see another approach to
load testing

Why Load Testing?

Detect software failures

Detect performance thresholds

Detect integration failures

Detect proper configurations
Optimization of Hardware / Software
Determine if application is Good-To-Go

The purpose of Load Testing is to
simulate a system load and measure the
user experience to determine if the
performance goals were met.

The purpose of Integration Testing is to
test performance and identify problems
that occur when all processes used
to provide the user experience
are combined as a system.

A1 3H% 430

Q
()]
3=
=
©
&)
=
l..nl
Q

Ny
L' q -v 5
e

9

L HH TS

rong every time...

School of Hard Knocks

What Will We Cover?

Shortfalls of FLOSS benchmark tests
ldentifying Test Components
|dentifying Realistic Loads
ldentifying the Dataset

Developing Tests and Procedures
PostgreSQL Functions for Tests
Python Scripts for Tests

Helpful Tools

Typical Application Stack

Backend

Data base

and other shared re

Shortfalls of FLOSS Tests

It iIs not your application

Results are not always explained
Reporting can be cryptic or unhelpful
Does not fit all your needs

Does not use a realistic data set

Example FLOSS Testing Tools

 Database
— pgbench
— Tsung (Erlang)
— pgReplay
 Backend
— Included application tests

 Frontend
— Tsung
— JMeter
— Ab
— Siege
— Selenium
— Funkload

The Test Process

ldentifying Test Components

T

Database Backend Frontend

B

ldentifying Test Components

Database

— Are there complex architectural designs that
warrant special testing (e.qg. Triggers,
Functions) for performance?

heavily written to that may
affect performance?

» Partitioned Tables

« Data Warehousing

ldentifying Test Components

Database continued

— Are there Materialized Views that may affect
performance (e.g. Eager)?

— Are there Indexes that may affect
performance?

— What does the data look like?

* Typical dataset
* Average row size

! — ldentify "heavy” queries

ldentifying Test Components

Backend

— What functions of the backend need to be
reproduced programmatically?

— What does the data need to look like?

— What scheduled tasks exist?
« CRON jobs
« Daemon processes >

 Scheduled events
— Backups

— Audits
— Reports

ldentifying Test Components

Frontend

— What functions of frontend need to be
reproduced programmatically?

— What does a typical end user do?
* Record end user interaction
* Record time usage

* |ldentify activities done 80% of
the time

B

Loads

1C

ISt

Ing Reali

14Y

ldent

|ldentifying Realistic Loads

Which Perspective?

— The perspective you choose changes how
you will test and what the results will say
about performance from that perspective.

— Examples
« User
« Account/Client
* Geographical Location
* Object of Interest

ﬂ « Combination of the above

|ldentifying Realistic Loads

How Many Users?

— Internal Application
* |dentify size of organization or team
* |dentify forecasted growth

— External Application
* Identify size of current user base = = =
 Identify forecasted growth

* Estimate based on Marketing
or Business Plan

» Estimate based on competitor’s or
other aspiration’s current user base

|ldentifying Realistic Loads

c How Many Users? continued
— Fixed Usage

e Subscription based limit
 Hardware based limit

« Software based limit

e |.T. based limit

B

|ldentifying Realistic Loads

How Much Data?

— Using the Marketing and Business Plan

» Forecast Perspective’'s Base and Usage
— At Launch
— At 1 year
— At 3 year

 Forecast Users
— At Launch

— At 1l year
— At 3 year

|ldentifying Realistic Loads

Customers 200 600 1200 3000 6000

RTUs 400 1200 2400 6000 12000
Devices 1300 3900 7800 19500 39000

* A typical use session is about 8 minutes (480 s)
* We assume a 12 hour peak use time during the day (43,200 s)
* We assume # of users = # Contacts (3000)

<peak time> 43200 s
----------------- = <average rate of new users> OR --—---—-----=144s

<users> 3000

480s /14.4 s = 33.333 concurrent users

ﬂ Lhraverrroute

. 3 = =
BUT I STILL

| E-M C "’1 3.4 U’ 72 UNDDEORt;"l.‘rAND

e THE END-USER

J'Bm:ra‘/
= (, ’37 ZBJYL?"

ldentifying the Dataset

]
p ==
ol =
— -
S
= ——
==
== —
=
=3} =
‘ =
== =
== B
==
=
=== =
==
== e
=
=
-
- e s
eSS S =1
==
==
=
[—

ldentifying the Dataset

Which Data to Use?

— Fixed Data

* Informational data
* Lookup tables

— Perspective Static Data

 Identify tables required

 |dentify average number of
rows and data

ldentifying the Dataset

Which Data to Use? continued

— Historical Data
» Partitioned Tables
* Logs
* Audit Tables

ldentifying the Dataset

* The test Dataset can now be based on
— Perspective
— Marketing and Business Plan Forecasts

— Which Data
— Calculated estimate of
* Perspective units : ’
. OO
* Average rows in tables per e

each Perspective unit

* Average data column size per
ﬂ row per each Perspective unit

Develop Tests

MAKE ME A SANDWICH.

WHAT? MAKE
IT YOURSELF.

SUDO MAKE ME

A SANDWICH.

Develop Database Tests

Functions

— Generation Functions
» Perspective unit
e Historical data
* I[ndex create/drop

Schema
— Build Scripts

 Make database template

schema plus core data
RS

It Takes Time

/I ‘ | | | | ‘ | ‘ ‘
10000

6000

Contacts

1200

s000 | (A
N
'
:

600
200
o = < P o s . .
0 p 3 4) 6 7 8 9
Hours
m time_db_setup B time_general_setup ™ time_data

B time_reindexing B time_vacuum B time_statistics

Size (GB)

160

140

120

100

(00}
o

60

40

20

It Takes Resources

2 3 4 5

www db_size_simple e db size complex === rows_ data

300

- 250

- 200

150

- 100

- 50

Rows (Millions)

Develop Database Tests

Tips
— Make multi-process (cores)
— Prefix test functions with “test_"

— Run functions as superuser

e use SET ROLE in function if
necessary

— Make nested functions

* Function of functions helps
simplify tests scripts

.\T%— Prepare for partitioned tables N

import sys

if len(sys.argv) <= 2:

inform = "False"
else:
inform = sys.argv[2]
test = sys.argv[1]
cpu_cores = 4
poll_interval = 2.5
years = 1
if inform.lower() == "true":
inform = True
else:
inform = False

setup.py

gen_history.py

#!/usr/bin/env python

import time

import setup

import pgdb #postgreSQL wrapper
import subprocess

def timestamp():
"""Returns formatted timestamp MM.DD.YYYY HH:MI:SS"""
1t = time.localtime(time.time())

return "%02d.%02d.%04d %02d:%02d:%02d" % (1t[2], 1t[1], 1t[0], 1t[3],
1t[4], 1t[5])

start_overall = time.time()

gen_history.py

drop/create db

ts_create = timestamp()

print "Creating wre_test_base wre_test_%s Database" % setup.test, ts_create
start_create = time.time()

subprocess.call('dropdb wre_test_%s' % setup.test, shell=True, stdout =
subprocess.PIPE)

subprocess.call('createdb -E UTF8 -0 wre_test -T wre_test wre_test_%s' %
setup.test, shell=True, stdout = subprocess.PIPE)

connect to database

my_db = pgdb.database("host='1localhost' port='5432"' dbname='wre_test_%s'
user="'postgres' password=‘sOmEaweSoMeHash'" % setup.test)

end_create = time.time()

print "Finished Creating wre_test_base wre_test_%s Database (%s s)" %
(setup.test, int(end_create - start_create))

print ""

gen_history.py

generate contacts, etc
ts_setup = timestamp()

print "Setting Up %s RTUs, Contacts, Devices, and Metatdata" % setup.test,
ts_setup

start_setup = time.time()

subprocess.call('psql -c "SELECT * FROM test_gen_setup(%s);" wre_test_%s' %
(setup.test, setup.test), shell=True, stdout = subprocess.PIPE)

end_setup = time.time()

print "Finished Setting Up %s RTUs, Contacts, Devices, and Metatdata (%s
s)" % (setup.test, int(end_setup - start_setup))

print ""

gen_history.py

generate historical data

ts_data = timestamp()

print "Begin Generating Historical Data", ts_data
start_data = time.time()

remove old partitions

subprocess.call('psql -c "SELECT test_remove_partitions();" wre_test_%s' %
setup.test, shell=True, stdout = subprocess.PIPE)

create partitions

subprocess.call('psql -c "SELECT test_gen_history_ddl(%s);" wre_test_%s' %
(setup.years, setup.test), shell=True, stdout = subprocess.PIPE)

disable trigger for last# generate data

subprocess.call('psql -c "ALTER TABLE wre_test.my_partitioned_table DISABLE

TRIGGER a_insert_my_partitioned_table_last_upsert_trigger;" wre_test_%s'
% setup.test, shell=True, stdout = subprocess.PIPE)

gen_history.py

generate data

processes = []

for x in range (setup.cpu_cores):
print " starting process %s" % (x+1)
temp = subprocess.Popen('psql -c "SELECT * FROM
test_gen_history_by_cpu(%s, %s, %s, %s);" wre_test_%s' %

(setup.cpu_cores, x+1, setup.poll_interval, setup.years, setup.test),
shell=True, stdout = subprocess.PIPE)

processes.append(temp)
for process in processes:
process.wait()

gen_history.py

populate last

subprocess.call('psql -c "INSERT INTO wre_test.my_partitioned_table_last
(fk_id, wval, updated) SELECT some_id, val, CURRENT_TIMESTAMP FROM t1;"
wre_test_%s' % setup.test, shell=True, stdout = subprocess.PIPE)

enable trigger for last

subprocess.call('psql -c "ALTER TABLE wre_test.my_partitioned_table
ENABLE TRIGGER a_1insert_my_partitioned_table_last_upsert_trigger;"
wre_test_%s' % setup.test, shell=True, stdout = subprocess.PIPE)

end_data = time.time()

print "Finished Generating Historical Data (", int(end_data - start_data),
IIS) 14

print ""

gen_history.py

reindex

ts_reindex = timestamp()

print "Start Reindexing", ts_reindex
start_reindex = time.time()

my_db.execute_sql ("SELECT * FROM test_gen_history_indexes(%s)",
setup.years)

db_return = my_db.fetchone()

create indexes

lines = []

loop through subprocess.Popen()...

for 1line in db_return['test_gen_history_indexes']:

temp = subprocess.Popen('psql -c "%s" wre_test_%s' % (line,
setup.test), shell=True, stdout = subprocess.PIPE)

Tines.append(temp)
for index in lines:
index.wait()
end_reindex = time.time()
print "Finished Reindexing (", int(end_reindex - start_reindex), "s)"
print ""

gen_history.py

vacuum db

ts_vacuum = timestamp()

print "Start vVacuum Analyze", ts_vacuum
start_vacuum = time.time()

subprocess.call('vacuumdb -z wre_test_%s' % setup.test, shell=True, stdout
= subprocess.PIPE)

end_vacuum = time.time()
print "Finished vacuum Analyze (", int(end_vacuum - start_vacuum), "s)"
print ""

gen_history.py

do statistics

ts_stat = timestamp()

print "Start Generating Statistics", ts_stat
start_stat = time.time()

my_db = pgdb.database("host="'localhost' port='5432' dbname='wre_test_%s'
user="'postgres' password='sOmEaweSoMeHaSh'" % setup.test)

my_db.execute_sql ("SELECT simple, complex FROM dbsize")
db_return = my_db.fetchone()

my_db.execute_sql ("SELECT count(*) AS total FROM
wre_test.my_partitioned_table")

db_rows = my_db.fetchone()
end_stat = time.time()

print "Finished Generating Statistics (", int(end_create - start_create),
llS) 14]

print ""

gen_history.py

done
ts_finish = timestamp()
end_overall = time.time()

pr1'nt . TEST COMPLETE ==== =

print "Started: ", ts_create

print "Finished: ", ts_finish

print "Overall Time: ", int(end_overall - start_overall), "s"
print " Database Setup: ", int(end_create - start_create), '"s"
print " General Setup: ", int(end_setup - start_setup), "s"
print " Historical Data:", int(end_data - start_data), "s"

print " Reindexing: ", int(end_reindex - start_reindex), "s"
print " Vacuum Analyze: ", int(end_vacuum - start_vacuum), "s"
print " Statistics: ", int(end_stat - start_stat), "s"

print "Database Size"

print " Simple: ", db_return['simple']

print " Complex: ", db_return['complex']

print "Data Rows: ", db_rows['total']

gen_history.py

f = open('wre_test_%s.log' % setup.test, "w")

f2 = open('wre_tests.log', "a")

f.write("ts_start, ts_finish, time_overall, time_db_setup,
time_general_setup, time_data, time_reindexing, time_vacuum,
time_statistics, db_size_simple, db_size_complex, rows_data\n")

f.write("%s, %s, %s, %S, %S, %S, %S, %S, %S, %S, %S, %s\n" % (ts_create,
ts_finish, int(end_overall - start_overall), int(end_create -
start_create), int(end_setup - start_setup), int(end_data - start_data),
int(end_reindex - start_re$

f2.write("%s, %s, %s, %S, %S, %S, %S, %S, %S, %S, %S, %s, %s\n" %
(setup.test, ts_create, ts_finish, int(end_overall - start_overall),
int(end_create - start_create), int(end_setup - start_setup),
int(end_data - start_data), int(end_r$

f.close()

f2.close()

if setup.inform:

subprocess.call ("echo 'Finished Generating Database for %s
Contacts'|/usr/sbin/sendmail 8885551212@vtext.com" % setup.test,
shell=True)

fulltest.sh

cp wre_tests.log.clean wre_tests.log

python
dropdb
python
dropdb
python
dropdb
python
dropdb
python
dropdb
python
dropdb

gen_history.py 200
wre_test_200
gen_history.py 600
wre_test_600
gen_history.py 1200
wre_test_1200
gen_history.py 3000
wre_test_3000
gen_history.py 6000
wre_test_6000
gen_history.py 10000
wre_test_10000

Perspective Units

echo 'Finished WRE historical data test'|/usr/sbin/sendmail
8885551212@vtext.com

Develop Backend Tests

If you have backend processes, you may
need to create scripts that will provide the
necessary input or events that will trigger

—Virtua
—Virtua
—Virtua

;s; 4 e

the backend process.
| Users
| Perspective Units

 Entities P

Develop Frontend Tests

« We will concentrate on web-based
applications

| Funkload
— Reports are excellent for web
— Charts show thresholds

* Tsungis a close second

— Reports are a bit vague
— Highly Scalable

%

Run Tests

Run Tests

e Generate test database
« Generate historical data
* Turn PostgreSQL logging on

» Start backend tests and let them ramp
up

» Start frontend test

« Complete tests

’Turn PostgreSQL logging off

Generate Test Report

* Our Reporting Tools
— pgFouine
— Funkload
— Log files
— Microsoft Office
* Our Monitoring Tools
— OpenNMS
— Yet Another Monitor (YAM)—in house

pgFouine

 Normal pgFouine reporting

php pgfouine.php -memorylimit 3840 -file pgsql -top 40 -
report queries.html=overall,bytype,slowest,n-
mosttime,n-mostfrequent,n-slowestaverage -report
hourly.html=overall,hourly -report
errors.html=overall,n-mostfrequenterrors -format html-

with-graphs
» Since we are dealing with large files, we

need to split out to chunk* files
split --11nes=1000000 pgsql.log chunk

@

pgFouine

 Example of how to do pgFouine CSV

report

cat chunk/chunk* |~/pgfouine/pgfouine-
1.2/pgfouine.php -memorylimit 3750 - -report
chunk*_queries.csv=csv-query -format text

 Example of how to combine all CSV into
one full CSV

cat chunk*_queries.csv >> queries.csv

@

pgFouine

 Make a new database and table to put
the CSV data into

CREATE DATABASE mytest encoding 'UTFS8';
CREATE TABLE 109 (

1d integer,

date timestamp,

connection_id integer,

database text,

"user" text,

duration float,

query text);

pgFouine

* Log into the database and run

COPY log FROM 'queries.csv' WITH CSV;

ALTER TABLE log ADD COLUMN type CHAR(1) DEFAULT
1 Sl ¢

UPDATE Tog SET type='I' WHERE query ~’
"Ainsert.*$';

UPDATE log SET type='D' WHERE query ~’

'Adelete.*$';
UPDATE log SET type='U' WHERE query ~°
"Aupdate.*$’;

UPDATE log SET type='O' WHERE query NOT ILIKE
'select®%' AND query NOT ILIKE 'insert%' AND query
NOT ILIKE 'update%' AND query NOT ILIKE
'delete%’';
CREATE INDEX test_date_idx ON log(date);
CREATE INDEX test_database_idx ON log(database);

CREATE INDEX test_connection_idx ON
log(connection_id);

CREATE INDEX test_type_idx ON log(type);

Queries

4000

3500

3000

2500

2000

1500 -

1000

500

Database TPS

i

| J|||

||||| .l‘

Hours

Database CPS

i

200

180

160

140

O 0 0
oV} o o0
i i

sSuoildauuo)

o
(o}

o
<

20

(%]
—
>
o
I

Database TPM by Type

140,000 20
/_ 18

120,000 : '
L 16
100,000 14
80,000 ’ i
40,000 ” | ‘ ' - 6
i 4

20,000

2
0 - 0

1 P 3 4

@

I DELETE ®=OTHER MEMUPDATE MEEINSERT MSHSELECT =——running total

Database Queries by Function

Portal

Monitor

Backend Process 1

Backend Process 2

Web Services

W W

B

0

1000000 2000000 3000000 4000000 5000000 6000000 7000000

M SELECT
M INSERT
B UPDATE
M DELETE
= OTHER

Database Queries by Type

@ M SELECT MW UPDATE [DELETE M INSERT M OTHER

Funkload Report

Fages Response time

: ned/p9a/pgs —— |
nin/pl8/med T
avg

|

158

Concurrent Users

|ldentifying Realistic Loads

Customers 6000 10000

RTUs 12000 20000
Devices 39000 65000

Database FAIL

Backend FAIL

Frontend FAIL

Q Lhraverrroute

Things Learned Along the Way

DO

— Make everything scriptable and repeatable
— Time everything

— Keep notes of what you did and the results
— Spend the time to get quantifiable numbers
— Log everything possible

— Make a baseline dataset to get fastest query
results and fastest user experience for
comparrison

Things Learned Along the Way

DO

— Run these tests on the actual production
system or equivalent

— Make optimizations after you complete tests
— Request hardware if it is the bottleneck

— Re-run tests after optimizations or core
changes to prove goals

* We ran the Full Integration Test (F.I.T.) ~5 times

Things Learned Along the Way

DO

— Combine with monitoring
e OpenNMS
* Nagios
« Zabbix
« Reconnoiter / Circonus (talk to xzilla)
e Home-brewed

Things Learned Along the Way

DO NOT

— Skimp out on the logging
» Sanity checks to explain anomalies

— Think it will be a simple process and
something quickly achievable in a day

— Ignore the Suits and Marketroids
— Ignore the SLA

Hard Work Pays Off

807% speed increase on website

85% bandwidth reduction
Discovered bottlenecks

Discovered thresholds

Fully redundant and scalable system

Better understanding of what our
database is actually doing

Changes Made as a Result

Apache + APC + mod_php =2 Lighttpd +
eAccelerator + FastCGl + PHP5

Load balanced servers as heeded due to
discovered thresholds

Backend application no longer caching
Web Servers split according to task

Virtualized servers reconfigured for
resources needed instead of guessing

Changes Made as a Result

e Purchased more hardware

« Database Disk Schedule Elevator set for
best performance

— {NOOP | CFQ | Deadline}

What We Covered

Shortfalls of FLOSS benchmark tests
ldentifying Test Components
|dentifying Realistic Loads
ldentifying the Dataset

Developing Tests and Procedures
PostgreSQL Functions for Tests
Python Scripts for Tests

Helpful Tools

For More Information

Funkload — nttp://funkload.nuxeo.org/

Tsung — http://tsung.erlang-projects.org/
OpenNMS— nttp://www.opennms.org/

Blog— http://digicondev.blogspot.com/
Email— conradz@gmail.com

