
 1

Not just UNIQUE

Jeff Davis
Truviso, Inc.



 2

Why is UNIQUE so unique?

● Only constraint where two tuples can 
conflict with eachother

– That is, the existence of one tuple 
precludes others from existing

● Effectively a predicate lock on a very 
simple predicate

● Special code to enforce unique constraint 
in the BTree code – doesn't work GiST, 
etc.



 3

Motivation for More General 
Constraints

● PERIOD data type can represent a period 
of time: 

– http://pgfoundry.org/projects/temporal

● Definite beginning and end time, e.g., the 
period of time during which a professor 
is teaching in a classroom

● But two professors can't teach in the 
same classroom at the same time

● So periods of time cannot overlap

http://pgfoundry.org/projects/temporal


 4

Non-Overlapping Constraint

● Very commonly known as a “schedule 
conflict”

● How do you specify a non-overlapping 
constraint in PostgreSQL currently?

● Any ideas?



 5

Idea 1: Serialize

● Only one writer
– Exclusive lock

● Before updating any reservation, search 
all existing reservations for conflicts

● Horrible, unpredictable performance



 6

Idea 2: Quantize

● Break into time slices, e.g. 1 hour.
– Slice time is business-dependent

● Use UNIQUE constraint on beginning
● Imposes unnecessary business constraint

– Nobody can reserve 1:30pm - 2:30pm

● Code is not reusable for other businesses
– Hotels reserve by day, not hour

● Not useful when quantum is too small
– Security, scientific observations, audit 

logs, etc.



 7

Idea 3: Procedural Code

● Triggers
● Perhaps use dummy rows that exist only 

for row-level locks
● Perhaps application code
● Probably will not perform well
● Very business-specific, not reusable
● Error prone
● Good luck...



 8

Idea 4: Delayed Check

● Record timestamp when reservation was 
recorded

● Make extra process check for conflicts 
and notify victims asynchronously

● Unhappy customers
● Adds uncertainty after “commit”
● Cascading problem



 9

Back to the Example

● If the constraint is not enforced by the 
database...

● ...then it will be enforced when two 
professors each believe they have 
reserved the same room

● A duel?
● Probably a less desirable constraint 

enforcement mechanism than a friendly 
error from the DBMS



 10

Exclusion Constraints

● New feature in 8.5-devel
● Offers more general constraint 

enforcement mechanism



 11

Example

CREATE TABLE reservation
(
  room      TEXT,
  professor TEXT,
  during    PERIOD,
  EXCLUDE   USING gist
    (room   CHECK WITH =,
     during CHECK WITH &&)
);



 12

Example

CREATE TABLE reservation
(
  room      TEXT,
  professor TEXT,
  during    PERIOD,
  EXCLUDE   USING gist
    (room   CHECK WITH =,
     during CHECK WITH &&)
);

Can be arbitrary expression of fields in table.



 13

Example

CREATE TABLE reservation
(
  room      TEXT,
  professor TEXT,
  during    PERIOD,
  EXCLUDE   USING gist
    (room   CHECK WITH =,
     during CHECK WITH &&)
);

Exclusion operator. In this case, “overlaps”.



 14

Example
CREATE TABLE reservation
(
  room      TEXT,
  professor TEXT,
  during    PERIOD,
  EXCLUDE   USING gist
    (room   CHECK WITH =,
     during CHECK WITH &&)
);

Type of index to build and use for 
enforcement.



 15

Operator Detects Conflicts

● The operator is used to search for 
conflicts

● Should return TRUE when two values 
conflict

● Should return TRUE when two values 
conflict

● So the “overlaps” operator (“&&”) would 
be used to enforce the constraint that 
no two tuples contain overlapping 
values



 16

Back to UNIQUE

● If you specify all operators as “=”, the 
semantics are identical to UNIQUE

● Performance slightly worse, because one 
additional index search is required

● But can be used with GiST



 17

UNUNIQUE

● If you specify operator as “<>”, then 
constraint is the opposite of unique: all 
values must be the same!

● However, won't work for types that don't 
have a search strategy for “<>”.

● Use case: At the zoo, if you've already 
put zebras in the cage, you can put 
more zebras in -- but don't put lions in.



 18

Multi-Column Constraints

● ... EXCLUDE USING gist
      (a CHECK WITH =,
       b CHECK WITH &&) ...

● Tuple1 conflicts with Tuple2 if and only if:
– Tuple1.a =  Tuple2.a AND

– Tuple1.b && Tuple2.b

● Otherwise, both tuples can appear in the 
table.



 19

Extra Capabilities

● Support for predicates (WHERE)
– Constraint on a subset of the table

● Support for arbitrary expressions
– ... EXCLUDE ((t::circle)

    CHECK WITH &&) ...

● Can use other tablespaces and index 
parameters, similar to UNIQUE.

● Deferrable
● Doesn't work with GIN, yet.



 20

Future Work

● Multiple constraints can use the same 
index

● UNIQUE(a, b) and UNIQUE(a, c) can 
both use an index on (a, b, c)

● Depending on selectivity of “a”, may 
perform much better than two separate 
indexes



 21

Conclusion

● Constraints are always enforced
● Sometimes by the DBMS (cheap), 

sometimes by real life (expensive)
● The very simple, very common “schedule 

conflict” constraint is almost impossible 
to enforce with most DBMSs

● Let's make it easy, scalable, and flexible.
● “Exclusion Constraints” in 8.5


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

