

Database Anti-Patterns
Robert Treat
PGCon 2008

Introduction

Robert Treat
DBA, part time postgres ninja
http://www.brighterlamp.org/

OmniTI
Internet Scalability Experts
http://omniti.com/is/hiring

Ground Rules
Reality...
●Talk covers lot of ground
●Not enough time to go into details on
 every topic
●Plus, we are up against pub time

Ground Rules

So....
● Aim is to familiarize you with concepts
● Give you terms for further research
● Google/Yahoo Are Your Friend

Ground Rules

By the way...
● Questions are good
● Arguments are not

The Grand Scheme

Schema Design
Sketchy Data
Indexes and Constraints
Query Tips
Data Manipulation

Schema Design

Data Types
Defining Data Sets
Normalization
Surrogate Keys
EAV Pattern
Trees

Data Types
● Just use text

● char/varchar/text the same under the hood
● avoid artificial limits

● Focus on functions
● Phone numbers often require string manipulation
● Unix timestamp vs. Date arithmetic

● Minimize typecasts

Defining Data Sets

● Take advantage of strong data typing
● CHECK limits input at column level

● ENUM limits specific values at type level
 Allows you to define a custom order, provides compact storage

● DOMAIN defines a data type within constraint
boundaries

● Often outperforms JOIN on lookup tables

● Allows for simpler schema design

● Be aware of negative side effects
● Changing definitions will involve heavy locks
● Some changes require table rewrite
● Corner cases (arrays, functions)

Normalization overview

● Hierarchy of rules for removing redundant
data from tables

● Helps avoiding INSERT, UPDATE, DELETE anomalies

● Multiple Normal Forms (NF)
● Aim for 3rd NF by default
● Beyond that can get obscure and not always relevant

● Denormalize to fix specific performance
issues

● Balance slow down for INSERT/UPDATE/DELETE with
improved performance for SELECT

● Requires additional logic to handle redundent data

Normalization (1NF)

● All columns contain only scaler values (not
lists of values)

● Split Language, Workgroup, Head
● Name, Language, and Workgroup are now the PK

● Add all possible permutations?

Name Title Language Salary Workgroup Head
Axworthy Consul French 30,000 WHO Greene
Axworthy Consul German 30,000 IMF Craig
Broadbent Diplomat Russian 25,000 IMF Craig
Broadbent Diplomat Greek 25,000 FTA Candall
Craig Amabassador Greek 65,000 IMF Craig
Craig Amabassador Russian 65,000 IMF Craig
Candall Amabassador French 55,000 FTA Candall
Greene Amabassador Spanish 70,000 WHO Greene
Greene Amabassador Italian 70,000 WHO Greene

Normalization dependence

● Column A is
● Set dependent if its values are limited by another column
● Functionally dependent if for every possible value in a

column, there is one and only one possible value set for
the items in a second column

− Must hold true for all possible values

● Transitively dependent on another column C if that
column is dependent on column B, which in turn is
dependent on column C

Normalization (2NF)

● All non-key columns must be functionally
dependent on PK

● Title, Salary are not functionally dependent on the
Language column

● Head is set dependent on Workgroup

Name Language
Axworthy French
Axworthy German
Broadbent Russian
Broadbent Greek
Craig Greek
Craig Russian
Candall French
Greene Spanish
Greene Italian

Name Title Salary Workgroup Head
Axworthy Consul 30000 WHO Greene
Axworthy Consul 30000 IMF Craig
Broadbent Diplomat 25000 IMF Craig
Broadbent Diplomat 25000 FTA Candall
Craig Amabassador 65000 IMF Craig
Candall Amabassador 55000 FTA Candall
Greene Amabassador 70000 WHO Greene

Normalization (3NF)

● All non-key columns must be directly
dependent on PK

● Head is only dependent on the Name through the
Workgroup column

Name Language
Axworthy French
Axworthy German
Broadbent Russian
Broadbent Greek
Craig Greek
Craig Russian
Candall French
Greene Spanish
Greene Italian

Name Title Salary
Axworthy Consul 30000
Broadbent Diplomat 25000
Craig Amabassador 65000
Candall Amabassador 55000
Greene Amabassador 70000

Name Workgroup
Axworthy WHO
Axworthy IMF
Broadbent IMF
Broadbent FTA

Workgroup Head
FTA Candall
IMF Craig
FTA Candall
WHO Greene

Surrogate Keys

● Natural Key (NK) is a CK with a natural
relationship to that row
● Surrogate Key (SK) is an artificially added
unique identifier

● A lot of ORMs, 3rd party apps, and Martin Fowler love SK
● Since they are artificial they make queries harder to read

and can lead to more joins
− SELECT city.code, country.code FROM city, country

WHERE city.country_id = country.id and city.country
= 'EN'

● Integers do not significantly improve JOIN performance
or reduce file I/O for many data sets

● Can help in making sure the PK is really immutable (just
keep them hidden)

Bareword ids

● Most common with schemas designed
around surrogate keys

● Makes SQL less obvious to read
− SELECT id, id, id FROM foo, bar, baz WHERE ...

● Makes ANSI JOIN syntax more cumbersome
− JOIN foo USING (bar_id)
− JOIN foo ON (foo.bar_id = bar.id)

● Often resort to alias columns to add clarity, scoping
● Some ORMs really like this (can be overridden)
● Use verbose id names instead

● Create table actor (actor_id, full_name text);

Foreign keys

● DBMS manages relational integrity with
FOREIGN KEYs

● Ensure that parent row exists in lookup table
∼ FOREIGN KEY (parent_id) REFERENCES parent(id)

● Automatically act on child row when parent row is updated
or deleted

∼ ON UPDATE CASCADE
∼ ON DELETE RESTRICT
∼ ON DELETE SET NULL

● Much safer than having ORM or worse hand maintained
code handle this

∼ Works on multiple applications, including CLI

Entity Attribute Value Pattern

● Uses type, name, value to store “anything”
● Value type if forces as varchar/text
● Cannot model constraints (unique, etc.) efficiently
● Often becomes dumping ground for unrelated data

● Other options
● Seek out proper relational models

● Advanced SQL (union, subselect, etc.) can help relate tables
● Generate DDL on the fly (polls)

● Poor mans EAV
● Multiple columns for different datatypes
● Still litters table with NULLS, but indexing will work better
● Patented (?)

Adjacency Model

● Text book approach
● Each row stores id of parent
● Root node has no parent
● Self joins are needed to read more than one depth

level in a single query
● Depth levels to read are hardcoded into the query

● SELECT t1.name name1, t2.name name2, t3.name name3
FROM tbl t1 LEFT JOIN tbl t2 ON t2.parent_id = t1.id LEFT
JOIN tbl t3 ON t3.parent_id = t2.id where t1.name = 'foo';

● Sub tree can be moved by modifying a single row

id parent_id name
1 NULL US HQ
2 1 Europe
3 2 Switzerland
4 2 Germany

Materialized Path

● Reference parent PK through the full path
for each child

● Violation of normalization rules
● No join needed to fetch entire tree as well as vertical

or horizontal sub tree's
● SELECT * FROM tbl ORDER BY path, name
● SELECT * FROM tbl WHERE path LIKE '1/23/42/%' ORDER

BY path, name
● SELECT * FROM tbl WHERE path LIKE '1/_' ORDER BY

name
∼ Optionally store a depth column to get rid of the LIKE
∼ Optionally use array data type

● Moving subtrees only requires changes to path
column for all rows in the subtree

∼ UPDATE tbl SET path = replace(path,'/1/23/42','/1/5/19')
WHERE path LIKE '/1/23/42%';

● Need to know node path

Nested Set

● Store left and right node number for each
node

● Start counting up from one left of the root node while
moving around the outer edges

● Very fast read performance for full tree
● Very slow write performance

Nested Set

● Some example queries
● Get the entire path to Dylan

− SELECT * FROM pers WHERE lft <=5 and right >=6
● Get all leaf nodes

− SELECT * FROM pers WHERE rgt – lft = 1
● Get subtrees starting attached to Emma

− SELECT * FROM pers WHERE lft > 4 and right < 11
● Changes to the tree require updating a lot of rows

● Need to know left and right node number
● Cannot be hand maintained
● Results in meaningless numbers inside queries when

examing log files

The Grand Scheme

Schema Design
Sketchy Data
Indexes and Constraints
Query Tips
Data Manipulation

Sketchy Data

Complex Data Structures
Images in the database
NIH Definitions

Complex Data Structures
● Some data structures are inefficient to
normalize

● Configurations that can have an arbitrary structure
● Large numbers of optional fields that suggest EAV

● Use XML
● If data is sometimes queried
● If structure / data needs to be validated

● Use serialized strings
● If there is no intention to ever query inside the data

− Make sure data does not fit inside the code or configuration file
that can be managed inside an SCM

Images in the database
● Many good reasons for storing LOB in the
database

● Replication
● Backups
● Access control
● Transactions
● OS Portability

● Use mod_rewrite to cache public images on
the filesystem

● mod_rewrite points missing images to a script with the
name as a parameter

● Script pulls image from database
− If the image is public it is cached in the filesystem

● Script returns image

Use standard definitions
● Often data has been designed in a standard
way

● Country Code
● Email address
● Zip Code
● VIN
● SEX (ISO 5218)

● Helps eliminate short-sightedness
● Increases commonality across projects

The Grand Scheme

Schema Design
Sketchy Data
Indexes and Constraints
Query Tips
Data Manipulation

Indexes and Constraints

Over indexing
Covering indexes
Foreign Keys
Full Text Indexing

Over indexing
● Indexes must be updated when data changes
occur

● INSERT/UPDATE/DELETE all touch indexes
● Some like it HOT, pg_stat_all_tables

● BitMap vs. Multi-Column Indexes
● Combine index on (a) and (b) in memory
● Index on (x,y,z) implies index on (x) and (x,y)

● Make sure indexes are used
● pg_stat_all_indexes

Covering indexes
● Creating indexes to avoid accessing data in
the table

● TOAST makes this less necessary
● Visibility information stored in the table

Foreign key indexing
● Foreign Keys ensures integrity between two
relations

● Indexes automatically created on PRIMARY KEY
● Indexes not created for child relations
● Watch out for type mismatches (int/bigint, text/varchar)

Full text indexing
● Add search engine style functionality to
DBMS

● LIKE '%foo%' and LIKE '%foo' cannot use index
● Regex searching has similar issues
● Built-in tsearch functionality in 8.3+

∼ GIN, expensive to update, very fast for searching
∼ GIST, cheaper to update, not as fast for searching

● Database Specific Syntax

The Grand Scheme

Schema Design
Sketchy Data
Indexes and Constraints
Query Tips
Data Manipulation

Query Tips

SELECT *
Optimizating
Case for CASE
ORDER BY random()
GROUP BY
Ranking

SELECT *
● Self-documentation is lost

● Which columns are needed with SELECT * ?
● Breaks contract between database and
application

● Changing tables in database should break dependencies
● Hurts I/O performance

● SELECT * must read/send all columns
● Useful for CLI (examples)
● Do not use it in production

Premature optimization
● Using surrogate keys or denormalization
without

● Seeing real world specific bottleneck
● Understanding what will slow down as a result

● Using fancy non-standard features unless
necessary

● I'm looking at you arrays!
● Thinking too much about future scalability
problems

Forgetting about optimization
● Testing performance on unrealistic data

● Test on expected data size
● Test on expected data distribution
● Many benchmark tools have data generators included

● Not thinking about scalability beforhand
● This one is a fine balance, it gets easier with experience
● Don't be afraid to draw upon outside experts if the

expectation is to grow up quick

Case for CASE
● Cut down on function calls

● WHERE some_slow_func() = 'foo' OR some_slow_func()
= 'bar'

● WHERE CASE some_slow_func() WHEN 'foo' THEN 1
WHEN 'bar' THEN 2 END

● Fold multiple queries into one
● Foreach ($rows as $id => $row)

− If (..) UPDATE foo set r * 0.90 WHERE id = $id
− Else UPDATE foo set r * 1.10 WHERE id = $id

● UPDATE foo SET r = (CASE WHEN r > 2 THEN r * .90
ELSE r * 1.10 END);

ORDER BY random()
● ORDER BY random()

● Obvious but slow
● >= random() limit 1

● Faster, but has distribution issues
● Plpgsql functions / aggregates

● Not a drop in replacement

GROUP BY
● All non-aggregate columns in
SELECT/ORDER BY must be in GROUP BY

● SQL Standard / Oracle only require unique column
● MySQL GROUP BY is non-deterministic (ie. Broken),

but allows standard syntax
● Can be used as an optimization hack

● Select distinct(name) from users (unique/sort)
● Select name from users group by name (hashaggregate)

GROUP BY with aggregates
 Rollup values into a single column

pagila=# select country_id, array_accum(city) from city

 pagila-# group by country_id having count(city) > 1 limit 5;

 country_id | array_accum
 ----------------+---

 2 | {Skikda,Bchar,Batna}

 4 | {Namibe,Benguela}

 6 | {"Vicente Lpez",Tandil,"Santa F","San Miguel de Tucumn","Almirante Brown"}

 9 | {Salzburg,Linz,Graz}

 10 | {Sumqayit,Baku}

CREATE AGGREGATE array_accum (anyelement)
(
 sfunc = array_append,
 stype = anyarray,
 initcond = '{}'
);

Ranking
● SQL 99 “windowing functions”

● Supported in Oracle, DB2 (doesn't look good for 8.4)
● SELECT * FROM (SELECT RANK() OVER (ORDER BY

age ASC) as ranking, person_id, person_name, age,
FROM person) as foo WHERE ranking <=3

− Find people with three lowest ages (include ties)

● Alternatively use a self JOIN
● SELECT * FROM person AS px WHERE

(SELECT count(*) FROM person AS py
WHERE py.age < px.age) < 3

● Find rank of a user by score
● SELECT count(*)+1 as rank FROM points WHERE score

> (SELECT score FROM points WHERE id < :id)

The Grand Scheme

Schema Design
Sketchy Data
Indexes and Constraints
Query Tips
Data Manipulation

Data Manipulation

SQL injection
Affected Rows
MVCC
Surrogate Key Generation
CSV import/export

SQL injection
● Always quote!

● Quote, validate, filter all data and identifiers from external
resources

− You can't trust external sources
− Think about refactoring

● Use real libraries (no addslash(), regex-fu)
● Schema path injection

● Postgres allows you to modify schema path, operators,
datatypes

− Make = = <>

Affected Rows
● Check affected rows to avoid SELECT before
data change

● If affected rows after update / delete > 0
− Something was modified

● INSERT / UPDATE give RETURNING clause
● Good ORM supports UPDATE/DELETE
without SELECT

MVCC problems
● MVCC prevents readers from being blocked

● Readers get a snapshot of the data valid at the start of
their transaction

● Can lead to issues with concurrent transactions

Transaction #1 Transaction #2 Comments
BEGIN TRANS;

BEGIN TRANS;
SELECT FLIGHT 23 Seat 1A available
UPDATE FLIGHT 23 Book 1A

SELECT FLIGHT 23 Seat 1A available
COMMIT

UPDATE FLIGHT 23 Book 1A
COMMIT

MVCC solutions
● Add checks into UPDATE

● SET customer = 'foo' WHERE flight = '23' and seat = '1A'
and customer IS NULL

● Look at affected rows to check for concurrent updates
● Use FOR UPDATE to aquire a lock in
transaction

● SELECT seat FROM seats WHERE flight = '23' AND
customer IS NULL FOR UPDATE

● Disables benefits MVCC for the SELECT

Surrogate Key Generation
● SERIAL type is facade over sequences

● Watch initializations when doing deployments,
dump/restore

● Don't clean up “holes”
● Point of surrogate key is to ensure uniqueness, not that

they are sequential or in any particular order
● Alternative generators

● UUID()
● Timestamp

● Watch out for multiple INSERTs per millisecond

Bulk Import / Export
● Wrap multiple INSERT in a transaction
● Use multi-values INSERT syntax
● COPY TO/FROM

● Supports copy from select
● Specific syntax to handle CSV data

● Disable constraints
● Alter table disable trigger

● Drop / Create indexes

The End
Thanks: Lukas Smith, http://www.pooteeweet.org/

• PostgreSQL, MySQL, Oracle online documentation

• SQL Performance Tuning by Peter Gulutzan and Trudy Plazer

• http://jan.kneschke.de/projects/mysql

• http://decipherinfosys.wordpress.com/2007/01/29/name-value-pair-design/

• http://parseerror.com/sql/select*isevil.html

• http://www.xaprb.com/blog/2007/01/11/how-to-implement-a-queue-in-sql/

• http://people.planetpostgresql.org/greg/index.php?/archives/89-Implementing-a-queue-in-SQL-Postgres-version.html

• http://arjen-lentz.livejournal.com/56292.html

• http://www.depesz.com/index.php/2007/09/16/my-thoughts-on-getting-random-row/

• http://forums.mysql.com/read.php?32,65494,89649#msg-89649

• http://troels.arvin.dk/db/rdbms/

• http://www.intelligententerprise.com/001020/celko.jhtml?_requestid=1266295

• http://archives.postgresql.org/pgsql-hackers/2006-01/msg00414.php

• http://www.nexen.net/images/stories/conferences/mysqlkitchen.mce.pdf.zip

Other References:

http://jan.kneschke.de/projects/mysql
http://decipherinfosys.wordpress.com/2007/01/29/name-value-pair-design/
http://www.xaprb.com/blog/2007/01/11/how-to-implement-a-queue-in-sql/
http://people.planetpostgresql.org/greg/index.php?/archives/89-Implementing-a-queue-in-SQL-Postgres-version.html
http://arjen-lentz.livejournal.com/56292.html
http://troels.arvin.dk/db/rdbms/
http://www.intelligententerprise.com/001020/celko.jhtml?_requestid=1266295
http://archives.postgresql.org/pgsql-hackers/2006-01/msg00414.php
http://www.nexen.net/images/stories/conferences/mysqlkitchen.mce.pdf.zip

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

