download pdf

® http://chak.org/matviews.pdf

But don’t read ahead yet! :-)

(oh, and use Acrobat, not Mac Preview,
well, check pg 16, got checkmarks? good)

important pages for now: 8 & |6

Monday, May 26, 2008

Materialized Views
that Work

Dan Chak (dan@chak.org)
PGCon 2008

Monday, May 26, 2008

Materialized Views
that Work Hard

(so you don’t have to)

Dan Chak (dan@chak.org)
PGCon 2008

Monday, May 26, 2008

Materialized Views
that Work Efficiently

(so your database can

do other things)

... FUN a screensaver
... like find aliens (SETI?)

... like think about
retirement

Dan Chak (dan@chak.org)
PGCon 2008

Monday, May 26, 2008

But let’s talk about me

(aka, who is this guy,
anyway?)

“You're probably
wondering who | am and
why you should be
listening to me for 3
hours.

Pon't worry, there will be
coffee breaks.”

Monday, May 26, 2008

Dan Chalds

lightning fast réesume

CourseAdvisor (Boston) 2005-?
Amazon.com (Seattle) 2003-2005
OpenForce (NYC) 2000-2002

MIT Computer Science & Engineering Bachelors
MIT Human Computer Interfaces Masters

O’Reilly Enterprise Rails
due out in October!

Monday, May 26, 2008

OpenForce - one of the first companies
building (and supporting!) ‘enterprise
software” based on open source. busted,
ahead of our time, but biz models works
now (MySQL AB anyone?)

led effort to port ArsPigita Community
system to Postgres - anyone heard of it?

Awmazon - Oracle

CourseAdvisor - Director of Software Dev

“The Orbitz of Education”

over 200k visits per day
5-6 million per month

~20%, or | million users, do an
“orbitz-style” search

for “what’s available for me?”’

one Postgres database

Monday, May 26, 2008

COURSEADVISOR

Your Source for Education and Training

A

re: PG
- been using it since 1999

Thanl(you’s t re: Garnder

- referenced everywhere
online - worth reading!
-we used it as a starting
point at CA

® PG Team for creating a great database

® Jonathan Gardner - wrote the authoritative

“Materialized Views in Postgres”

Kristof Redei - CourseAdpvisor intern who
but these ideas into practice in our
broduction application

Monday, May 26, 2008

application developers

web?
dw?

pg developers?

expertise -
expert,
intermediate,
newbie?

materialized a view before?

what about you

Monday, May 26, 2008

Monday, May 26, 2008

Agenda

|. W’s: What, why, when!

2. Some PG Basics

3. An end-to-end implementation

4. Getting Advanced (ie, even faster)

5. Repeatable Process

Monday, May 26, 2008

Part I:

What, Why,When!

Performance,
Performance,
Performance

. Definitions

. Applications

. Expectation Setting

All About Performance

Monday, May 26, 2008

® O(f(n)) becomes O(I)

® Attack from all angles

makes queries slow:
joins,
function evalvation f(n)

data warehouse land:

- mewmoize reporting queries
history doesn’t change, usvally
- sumwary tables

attack from all angles wmeans:

- vacuum
- query planning

not just view materialization
but also:

- view optimization

- configuration tweaking

Definitions

Monday, May 26, 2008

a repetitive query

select m.name,
m.rating_id,
m.length_minutes,
ms,*,
t.name as theatre_name,
t.zip_code,
z.latitude,
z.longitude,
a.seats_available,
coalesce(ptc.purchased_tickets_count, @) as purchased_tickets_count
from movie_showtimes ms
join movies m on (ms.movie_id = m,id)
join theatres t on (ms.theatre_id = t.,id)
join zip_codes z on (t.zip_code = z.zip
join auditoriums a on (ms.room = a.room and ms.theatre_id = a.theatre_id)
left outer join (
select count(*) as purchased_tickets_count,
o.movie_showtime_1id
from orders o,
purchased_tickets pt
where pt.order_confirmation_code = o.confirmation_code
group by o.movie_showtime_id
) ptc on (ptc.movie_showtime_id = ms.id)
where (ms.start_time - now()) < "1 week'::interval and ms.start_time > now()
and a.seats_available > coalesce(ptc.purchased_tickets_count, @);

Monday, May 26, 2008

a view is a named query

select m.name,

m.rating_id,
m.length_minutes,
ms.*,
t.name as theatre_name,
t.zip_code,
z. latitude,
z.longitude,
a.seats_available,
coalesce(ptc,purchased_tickets_count, @) as purchased_tickets_count

from movie_showtimes ms

join movies m on (ms.movie_id = m,id)

join theatres t on (ms,theatre_id = t,id)

join zip_codes z on (t.zip_code = z.zip)

join auditoriums a on (ms.room = a,room and ms,theatre_id =

left outer join (

select count(*) as purchased_tickets_count,

o.movie_showtime_id

from orders o,
purchased_tickets pt

where pt.order_confirmation_code = o.confirmation_code

group by o.movie_showtime_id

) ptc on (ptc.movie_showtime_id = ms.id)

where (ms.start_time - now()) < 'l week'::interval and ms.st

and a.seats_available > coalesce(ptc.purchased_tickets_col

abstraction

Monday, May 26, 2008

selecting from a view

Monday, May 26, 2008

equivalent to...

select * from (

create or replace view current_movie_showtimes as
select m.name,
m.rating_id,
m.length_minutes,
ms.*,
t.name as theatre_name,
t.zip_code,
z,latitude,
z, longitude,
a.seats_available,
coalesce(ptc.purchased_tickets_count, @) as purchased_tickets_count
from movie_showtimes ms
join movies m on (ms.movie_id = m.id)
join theatres t on (ms.theatre_id = t,id)
join zip_codes z on (t.zip_code = z,zip)
join auditoriums a on (ms.room = a.room and ms.theatre_id = a.theatre_id)
left outer join (
select count(*) as purchased_tickets_count,
o.movie_showtime_id
from orders o,
purchased_tickets pt
where pt.order_confirmation_code = o.confirmation_code
group by o.movie_showtime_id
) ptc on (ptc.movie_showtime_id = ms,id)
where (ms.start_time - now()) < 'l week'::interval and ms.start_time > now()
and a.seats_available > coalesce(ptc.purchased_tickets_count, @);

) current_movie_showtimes;

Monday, May 26, 2008

View Roundup

What'’s good What'’s not so good

® Abstracts a query behind a ® Entire query is executed for
view name each access

Mentally efficient ® Calculated columns re-
calculated on each access
Reusable

® | ooks like a table, but slow
Less prone to error like a query

Monday, May 26, 2008

Materialized Views!?

(sounds like an oxymoron to me)

base tables
physical)

create or replace view current_movie_showtimes as
select m.name,
m.rating_id,
m,length_minutes,
ms.*,
t.name as theatre_name,
t.zip_code

able,
"chased_tickets_count, @) as purchased_tickets_count
from movie_showtimes ms
join movies m on (ms.movie_id = m.id)
join theatres t on (ms.theatre_id = t.id)
join zip_codes z on (t.zip_code = z.zip)
join auditoriums a on (ms.room = a.room and ms.theatre_id = a.theatre_
left outer join (
select count(*) as purchased_tickets_count,
o.movie_showtime_id
from orders o,
purchased_tickets pt
r_confirmation_code = o.confirmation_code
time_id
J ms.id)
"1 week'::interval and ms.start_time > now()
e > coalesce(ptc.purchased_tickets_count, @);

materialized view
physical)

Monday, May 26, 2008

“materialize”

.‘L

Monday, May 26, 2008

Brctoren

mastesrisaleize | Ma'ti(a)réa iz

verb [intrans. |

1 (of a ghost, spirit, or similar entity) appear in bodily form.
e | trans.] cause to appear in bodily or physical form.
e | trans.] rare represent or express in material form.

2 become actual fact; happen : the assumed savings may not materialize.
e appear or be present : the train didn't materialize.

DERIVATIVES
ma:-te.ri-al-i-za.tion |ma ti(o)réala’za st on| |ma'tiriala’zerfon
ma'tiria’lar'zeifon| |-zerf{a)n| noun

result:

select * from current_movie_showtimes;

physical

really means... table!

select * from current_movie_showtimes;

® No “subquery” to compute on each access

® A physical table can be indexed, partitioned,
etc. to improve performance further

Monday, May 26, 2008

Types

Snapshot
Very Lazy
Lazy
Eager

Monday, May 26, 2008

Snapshot

Creates a physical table as the result of
selecting everything out of a view

Refresh at a given interval
Pro: Easy to set up
Con: Gets out of sync quickly

Con: Full refresh can be very expensive

Monday, May 26, 2008

Very Lazy

Like snapshot, but only out of sync rows get
updated at refresh time

Requires keeping track of which rows are
out of sync

Pro: Lighter refresh than snapshot
Con: Still gets out of sync quickly

Con: Need an ancillary table to implement
(or can use dirty column)

Monday, May 26, 2008

Lazy

Start with a snapshot

Refresh rows that are out of sync at the end
of each transaction

Pro: Always in sync*®
Pro: Only affected rows are updated

Con:There’s no “after transaction” trigger in
Postgres

* mutable functions excluded

Monday, May 26, 2008

comwmon question: can you
use statement level
triggers to get around N:1

E ag e r relationships?

statement level doesn’t tell
you which rows are
updated.

Like Lazy, but update materialized
each statement.

Uses triggers after update, insert, and delete
on all referenced tables

Pro: Always in sync™

Con: Bad in one-to-many relationships
updates. Updating rows that feed into an
aggregate cause N refreshes rather than |.

* mutable functions excluded

Monday, May 26, 2008

Refresh strategies

Eager
Lazy
Very lazy

Freshness
Overhead

Snapshot

Monday, May 26, 2008

Today’s Tutorial

Snapshot

Ve r)l Lazy none of the four are ideal
today:

sometimes lazy,
LaZ)' sometimes eager

fit to your needs

Eager

also:

e Solve mutable function problem for f(time)

* Mimic a post-transaction trigger

Monday, May 26, 2008

Monday, May 26, 2008

Applications

® High throughput web sites
® Data warehousing

® Reporting memoization

mewoization can be
tricky

will be discussed, but...
focus in talk will be on

real-time production
applications

Data Warehousing ETL

® Automatically build summary tables

® Automatically keep summary tables up to
date

® Memoize results of recurring queries

Monday, May 26, 2008

High Performance Production
Sites

® Reduces bottleneck O(f(n)) query to O(l).

Monday, May 26, 2008

Expectation Setting

® Billions of dollars
® 6-pack abs

® |00-1000x performance increase typical

Monday, May 26, 2008

Really!

® |00-1000x performance increase typical

Pepends on how slow
your query is to begin
with.

Also depends on how

heavily loaded your
database is.

Monday, May 26, 2008

Compare

® executing ® selecting a single
arbitrarily row out of an

complex query indexed table

on a loaded
database

1,2,3...552 *

Monday, May 26, 2008

Part |l: PG Basics

|. Query Planner
2. Stored procedures

3. Triggers

Monday, May 26, 2008

Query Planner

® explain

® explain analyze

Monday, May 26, 2008

select m. ,

)

from movies m,

theatres t,
movie_showtimes ms
where .
and .
group by m.

Monday, May 26, 2008

name

Casablanca
Casablanca
Casablanca
Casablanca
Casablanca
Casablanca
Casablanca
Casablanca
Casablanca

06894541

016984442
045223623
022829857
911318301
076421059
061251531
040015718

Casablanca - 056076113

Batman Returns
Casablanca - 030312782

Casablanca
Casablanca
Casablanca
Casablanca
Casablanca
Casablanca
Casablanca
Casablanca
Casablanca
Casablanca

Monday, May 26, 2008

068500646
075898953
098584173
027060755
096982095
070024548
032632352
033787956
017054103
096089516

Kendall
Kendall
Kendal 1l
Kendall
Kendall
Kendall
Kendall
Kendall
Kendal 1l
Kendall
Kendall
Kendall
Kendall
Kendall
Kendal 1l
Kendall
Kendall
Kendall
Kendall
Kendall
Kendal 1l
Kendall

name

Cinema
Cinema
Cinema
Cinema
Cinema
Cinema
Cinema
Cinema
Cinema
Cinema
Cinema
Cinema
Cinema
Cinema
Cinema
Cinema
Cinema
Cinema
Cinema
Cinema
Cinema
Cinema

037457857
037457857
042665552
02994601
02994601
015995510
042665552
02994601
037457857
02994601
037457857
015995510
02994601
02994601
015995510
042665552
042665552
042665552
037457857
02994601
037457857

explain

® returns the query plan
® fast

® units are mythical

Monday, May 26, 2008

explain
select m, ;

* 3
™
from movies m,
theatres t,
movie_showtimes ms
where ms,
and ms.
group by m.

Monday, May 26, 2008

Time to first Time to last
result record result record

QUERY PLAN

HashAggregate (cost=1061.17..1064.47 rows=264 width=51)
> Hash Join (cost=3.12..909.66 rows=20201 width=51)
Hash Cond: (n=. = t.id)
-> Hash Join (cost=1.99..630.76 rows=20201 width=28)
Hash Cond: (r=. = m.id)
-> Seq Scan on movie_showtimes ms (cost=0.00..351.01 rows=20201 width=8)
-> Hash (cost=1.44,.1.44 rows=44 width=28)
-> Seq Scan on movies m (cost=0.00..1.44 rows=44 width=28)
-> Hash (cost=1.06..1.06 rows=6 width=31)
-> Seq Scan on theatres t (cost=0.00..1.06 rows=6 width=31)
(10 rows)

Monday, May 26, 2008

explain analyze

® explain “plus”
® actually runs the query (without commit)

® adds time in milliseconds

Monday, May 26, 2008

explain analyze
select m, .

*)

from movies m,

theatres t,
movie_showtimes ms
where . = Mm,
and . = t.
group by m. 3

Monday, May 26, 2008

QUERY PLAN

HashAggregate (cost=1061.17,.1064.47 rows=264 width=51) (actual time=138.859,.138.881 rows=41 loops
-> Hash Join (cost=3.12..909.66 rows=20201 width=51) (actual time=69.565..120.111 rows=20201 loo
Hash Cond: (us. = t,id)
-> Hash Join (cost=1.99..630.76 rows=20201 width=28) (actual time=41.205..79.844 rows=2020
Hash Cond: (rs. = m,id)
-> Seq Scan on movie_showtimes ms (cost=0.00..351.01 rows=20201 width=8) (actual tim
-> Hash (cost=1.44..1,44 rows=44 width=28) (actual time=16.765..16.765 rows=44 loops
-> Seq Scan on movies m (cost=0.00..1.44 rows=44 width=-28) (actual time=16.65
-> Hash (cost=1.06..1.06 rows=6 width=31) (actual time=28.163..28.163 rows=6 loops=1)

find the slow operation
seq scan? add index

operations out of order?
-> explicit join syntax

cant solve? matview!

-> Seq Scan on theatres t (cost=0.00..1.06 rows=6 width=31) (actual time=28.115..28 5%

Total runtime: 139.110 ms
(11 rows)

QUERY PLAN

) (actual time=138.859..138.881 rows=41 loops=1)
) Cactual time=69,565..120.111 rows=20201 loops=1)

dth=28) (actual time=41.205..79.844 rows=20201 loops=1)

-0.00,.351.01 rows=20201 width=8) (actual time=24,329,.49.,35
P8) (actual time=16.765..16.765 rows=44 loops=1)

tual time=28.163..28.163 rows=6 loops=1)
.06 rows=6 width=31) (actual time-=28.115,.28.123 rows=6 loop

p..1.44 rows=44 width=28) (actual time=16.651..16.688 rows=44

explain/analyze should be an
integral part of development
process

new queries or old bottleneck
ones

used throughout talk to gauge
performance empirically

before materializing,
note:

sometimes a vacuum
analyze can make a

Monday, May 26, 2008

big difference

vacuum analyze

each query generates statistics
vacuum compacts database -- run nightly!

vacuum analyze does same, also re-orders
data on disk to improve performance based
on statistics

do everything you can to avoid materializing
a view!

Monday, May 26, 2008

Stored Procedures

® procedural programming inside the DB
e PL/pgSQL, PL/TCL, PL/Java, etc.

® This talk: learn through examples

Monday, May 26, 2008

Triggers

CREATE TRIGGER name { BEFORE | AFTER }{event[OR ...]}
ON table [FOR [EACH] { ROW | STATEMENT }]
EXECUTE PROCEDURE funcname (arguments)

Monday, May 26, 2008

create or replace function hello (
) returns trigger
security definer
language 'plpgsql’ as $%
begin
raise notice 'hellol’;
return null;
end
$5;

create trigger movies_select_hello_trig
after update on movies
for each row execute procedure hello();

movies_development=
NOTICE: hello!
UPDATE 1

Monday, May 26, 2008

Part lll: End to End

|. Considerations 5. Triggered Refresh

2. Getting into form 6. Indexing

3. The initial snapshot /. Performance

4. Refresh function

Note: This will be an eager implementation!

Monday, May 26, 2008

WWarning

® Although magical, obvious in retrospect

® Couple aha! moments, but easy once you
know how

Monday, May 26, 2008

to make this interesting,
need to use a real

: application with sowme
movies complexity.

id
name . .
length_minutes discuss each table in turn,
rating_id then introduce common

— query: current showtimes

movie_showtimes
theatres id purchased_tickets

id movie_id id

name theatre_id confirmation_code

phone_number room purchase_price_cents
start_time

auditoriums orders
theatre_id confirmation_code
room movie_showtime_id
seats_available movie_id
theatre_id
auditorium_id
room
start_time

Monday, May 26, 2008 51

create or replace view current_movie_showtimes as
select m. ;

as theatre_name,

3
?
?
?
coalesce(pic, , @) as purchased_tickets_count
from movie_showtimes ms
join movies m on (-,
join theatres t on (=,
join zip_codes z on (.
join auditoriums a on (s,
left outer join (
select (*) as purchased_tickets_count,
from orders o,
purchased_tickets pt
where

group by

) ptc on (= ms,id)
where (ms, - now()) < '1 week'::interval and
and a. > coalesce(.

Monday, May 26, 2008

Considerations

® Should be transparent to end-user; drop-in
replacement.

® Always accurate, up to date

Monday, May 26, 2008

Getting into form

® view should have primary key
® recast filters as columns

® rename as _unmaterialized

Monday, May 26, 2008

pkey is main table pkey,
create or replace view current_movie_showtimes as from wmovie_showtimes
select m. ;
have filters in where
clavse:
1 - not sold out
2 - current

as theatre_name,

¥
»
2

?
coalesce(pic, , @) as purchased_tickets_count

from movie_showtimes ms
join movies m on (-,
join theatres t on (=,
join zip_codes z on (.
join auditoriums a on (s,
left outer join (
select (*) as purchased_tickets_count,
from orders o,
purchased_tickets pt
where

group by

) ptc on (ptc, = ms.id)
where (ms.start_time - now()) < "1 week'::interval and ms.start_time > now()
and a.seats_available > coalesce(ptc.purchased_tickets_count, @);

Monday, May 26, 2008

create or replace view movie_showtimes_with_current_and_sold_out as
select m, ’

* H
ms.*,
. as theatre_name,
*]
*]
. ’
. s
coalesce(ptc, , @) as purchased_tickets_count,
((ms.start_time - now()) < "1 week'::interval and ms.start_time > now()) as current,
{a.seats_available < coalesce(ptc.purchased_tickets_count, @)) as sold_out
from movie_showtimes ms
join movies m on (s,
join theatres t on (n=.
join zip_codes z on (.
join auditoriums a on (
left outer join (
select (*) as purchased_tickets_count,

from orders o,
purchased_tickets pt

where
group by
) ptc on (pic.

Monday, May 26, 2008

create or replace view movie_showtimes_with_current_and_sold_out_unmaterialized as
select m. ’

. ¥
ms.*,
. as theatre_name,

2
coalesce(ptc. , @) as purchased_tickets_count,

((n=. - now()) < "1 week'::interval and m=. > now()) as current,
(. < coalesce(ptc. , @)) as sold_out
from movie_showtimes ms

join movies m on (s,
join theatres t on (us.
join zip_codes z on (t.
join auditoriums a on (
left outer join (
select (*) as purchased_tickets_count,

from orders o,
purchased_tickets pt
where pt.
group by o.
) ptc on (ptc,

Monday, May 26, 2008

movies_development=
View "public.movie_showtimes_with_current_and_sold_out_unmaterialized"

Column | Type | Modifiers

name character varying(256) |
rating_id character varying(16) |
length_minutes integer |
id integer |
movie_id integer |
theatre_id integer |
room character varying(64) |
start_time timestamp with time zone |
theatre_name character varying(256) |
I
|
I
I
I
I
|

Looks like
a table :)

Zip_code character varying(9)
latitude numeric
longitude numeric
seats_available integer
purchased_tickets_count | bigint
current boolean
sold_out boolean
View definition:
SELECT m.)
FROM movie_showtimes ms
JOIN movies m ON =,
JOIN theatres t ON
JOIN zip_codes z ON ©. titext = z. s rtext
JOIN auditoriums a ON . sitext = a. ::text AND
LEFT JOIN { SELECT (*) AS purchased_tickets_count,
FROM orders o, purchased_tickets pt
WHERE . iitext =
GROUP BY o.) ptc ON .

Feels like
a view (

Monday, May 26, 2008

Initial Snapshot

create table movie_showtimes_with_current_and_sold_out as
select *
from movie_showtimes_with_current_and_sold_out_unmaterialized;

Monday, May 26, 2008

movies_development=

Table "public.movie_showtimes_with_current_and_sold_out"

Column I

name
rating_id
length_minutes

id

movie_id

theatre_id

room

start_time

theatre_name

zip_code

latitude

longitude
seats_available
purchased_tickets_count
current

sold_out

nothing here

Monday, May 26, 2008

character
character
integer
integer
integer
integer
character
timestamp
character
character
numeric
numeric
integer
bigint
boolean
boolean

Type | Modifiers

varying(256) |
varying(16) |
|
I
|

id is pkey

varying(64) columns for filtering

with time zone
varying(256)
varying(9)

because this is a real table!

Indexing

materialized view is a regular table, so
benefits greatly from indexes

index minimally: pkey, filter columns
also index: anything you may search on

avoid over-indexing -- performance
performance performance!

Monday, May 26, 2008

alter table movie_showtimes_with_current_and_sold_out add primary key (id);

create index movie_showtimes_with_current_and_sold_out_current_idx
on movie_showtimes_with_current_and_sold_out(current);

create index movie_showtimes_with_current_and_sold_out_sold_out_1idx
on movie_showtimes_with_current_and_sold_out(sold_out);

Monday, May 26, 2008

Constraints! RIl?

® materialized view should not have
constraints or enforced foreign key
references

® MV can be temporarily stale

® base tables should have these already, so just
slows things down

Monday, May 26, 2008

Initial Comparisons

explain analyze
select *
from movie_showtimes_with_current_and_sold_out_unmaterialized;

VErSus

explain analyze
select *
from movie_showtimes_with_current_and_sold_out;

Monday, May 26, 2008

movies_development=
QUERY PLAN

Hash Left Join (cost=24579.41,.26527.35 rows=20212 width=136)| Cactual time=1349.085.,1457.846 rows=20201 loops=1)
Hash Cond: (ns.id = .)]

-> Hash Join (cost=3407.53..4406.86 rows=20212 width=128) (actual time=215.216..295.933 rows=20201 loons=1)
Hash Cond: (((

-> Merge Join

rows=652 loops=1)

QUERY PLAN

(actual time=1349.,085. .1457,.846 rows=20201 loops=1)

1 rows=20201 loops=1)

-> Seq Scan on movies m (cost=0.00,.1.44 rows=44 width=41) (actual time=0,025,.0.141 rows=44 loops=1)
-> Hash (cost=1.06..1.06 rows=6 width=40) (actual time=0.072..0.072 rows=6 loops=1)
-> Seq Scan on theatres t (cost=0.00..1.06 rows=6 width=40) (actual time-0.025..0.042 rows=6 loops=1)
-> Hash (cost=1.51..1.51 rows=51 width=13) (actual time=0.337..0.337 rows=51 loops=1)
-> Seq Scan on auditoriums a (cost=0.00..1.51 rows=51 width=13) (actual time=0.038..0.170 rows=51 loops=1)
-> Hash (cost=21078.46,.21078.46 rows=274 width=12) (actual time=1133,794..1133.794 rows=300 loops=1)
-> HashAggregate (cost=21072.30..21075.72 rows=274 width=4) (actual time=1133.197.,1133.466 rows=30@ loops=1)
-> Hash Join (cost=7807.30..19979.34 rows=218591 width=4) (actual time=200.112..1020.919 rows=218591 loops=1)
Hash Cond: ((o. Jitext = (pt. J:text)
-> Seq Scan on orders o (cost=0.00..4562.93 rows=218593 width=21) (actual time=0.022..81.572 rows=218593 loops=1)
-> Hash (cost=3793.91,.3793.91 rows=218591 width-17) (actual time=198,451,,198,451 rows=218591 loops=1)

> Seq Scan on purchased_tickets pt (cost=0.00..3793.91 rows=218591 width=17) (actual time=0.024..82.736 rows=218591 loops=1)
Total runtime: 1493.614 ms

(28 rows)

Monday, May 26, 2008

movies_development=
QUERY PLAN

Seq Scan on movie_showtimes_with_current_and_sold_out (cost=0.00..566.95 rows=7395 width=477) (actual time=0.039..17.259 rows=20201 loops=1)

Total runtime: 19,942 ms
(2 rows)

QUERY PLAN

(cost=0.00..566.95 rows=7395 width=477) (actual time=0.039../17.259

Monday, May 26, 2008

Initial Comparisons

explain analyze |,457ms
)

select *
from movie_showtimes_with_current_and_sold_out_unmaterialized;

VErSus

explain analyze

select * | 7ms
from movie_showtimes_with_current_and_sold_out;

materialized view is 85 times faster!

Monday, May 26, 2008

Refresh Function

The materialized view is fast,
but it’s not accurate

Monday, May 26, 2008

update movies

set name = "Batman Returns’
where id = (select movie_id from movie_showtimes where id = 5);
UPDATE 1

select name

from movie_showtimes_with_current_and_sold_out_unmaterialized
where id = 5;

name

Batman Returns
(1 row)

select name

from movie_showtimes_with_current_and_sold_out
where id = 5;

name

Casablanca - 099442405
(1 row)

Monday, May 26, 2008

create or replace function movie_showtimes_refresh_row(
id integer
) returns void
security definer
language 'plpgsql' as $%
begin
delete from movie_showtimes_with_current_and_sold_out ms

where ms.id = id;
insert into movie_showtimes_with_current_and_sold_out
select *
from movie_showtimes_with_current_and_sold_out_unmaterialized ms
where ms,id = id;
end

$$;

Monday, May 26, 2008

movies_development=
select movie_showtimes_refresh_row(5);

movie_showtimes_refresh_row

(1 row)

movies_development=
select name

from movie_showtimes_with_current_and_sold_out
where id = 5;

name

Batman Returns
(1 row)

Monday, May 26, 2008

Triggered Refresh

® refresh function works great, but we need it
to happen automatically

® accomplished with triggers attached to all
base tables

Monday, May 26, 2008

Refresh Triggers |01

® is a refresh needed for this operation?

® is it only needed under certain conditions!?

Monday, May 26, 2008

Triggers - old, new

® insert trigger:
refresh new row

® delete trigger:
refresh old row

® update trigger:
if bkey changes, refresh old, new; else either

Monday, May 26, 2008

movie showtimes insert

create or replace function ms_mv_showtime_it() returns trigger
security definer language 'plpgsql’ as $%
begin
perform movie_showtimes_refresh_row(ncw.1d);
return null;
end
3 H
Why not call refresh function
directly?

1. Wrapper allows additional

create trigger ms_mv_showtime_it_t after ins logie to be injected where needed.

for each row execute procedure ms_mv_showt

2. Trigger functions must return
null or row. We're going to play
w/ return val of refresh function
$00N.

Monday, May 26, 2008

movie showtimes
delete

create or replace function ms_mv_showtime_dt() returns trigger
security definer language 'plpgsql’ as $%
begin

perform movie_showtimes_refresh_row(old.id);

return null;

end
$$;

create trigger ms_mv_showtime_dt_t after delete on movie_showtimes
for each row execute procedure ms_mv_showtime_dt();

Monday, May 26, 2008

movie showtimes
update

create or replace function ms_mv_showtime_ut() returns trigger
security definer language 'plpgsql’ as $%
begin
if old.id = new.id then
perform movie_showtimes_refresh_row(cw,id);
else
perform movie_showtimes_refresh_row(old. 1);
perform movie_showtimes_refresh_row(cw, 1d);
end if;
return null;
end
$$;

create trigger ms_mv_showtime_ut_t after update on movie_showtimes
for each row execute procedure ms_mv_showtime_ut();

Monday, May 26, 2008

and repeat...

® same process for every table

® except when not needed

Monday, May 26, 2008

to make this interesting,
need to use a real

: application with sowme
movies complexity.

id
name . .
length_minutes discuss each table in turn,
rating_id then introduce common

— query: current showtimes

movie_showtimes
theatres id purchased_tickets

id movie_id id

name theatre_id confirmation_code

phone_number room purchase_price_cents
start_time

auditoriums orders
theatre_id confirmation_code
room movie_showtime_id
seats_available movie_id
theatre_id
auditorium_id
room
start_time

Monday, May 26, 2008 79

table

action

refresh needed?

movie_showtimes

insert

X

update

X

delete

X

movies

insert

update

delete

theatres

insert

update

delete

18 possible triggers,
only 9 needed

building this table is a big

insert

update

delete

help.

fewer refreshes = faster db,
faster user-perceived
performance

insert

update

delete

auditoriums

insert

update

delete

Monday, May 26, 2008

table

action refresh needed?

movies

insert

update

delete

create or replace function ms_mv_movie_ut() returns trigger
security definer language 'plpgsql’' as $%

begin
if old.id

= new,1d then

perform movie_showtimes_refresh_row(ms.id)

from
where
else

perform
from
where
perform
from
where

end if;

movie_showtimes ms
ms.movie_id = new.id;

movie_showtimes_refresh_row(ms.id)
movie_showtimes ms

ms.movie_id = old.1id;
movie_showtimes_refresh_row(ms.id)
movie_showtimes ms

ms.movie_id = new,1d;

return null;

end
$$;

create trigger ms_mv_movie_ut_t after update on movie_showtimes
for each row execute procedure ms_mv_movie_ut();

Monday, May 26, 2008

table action refresh needed?

insert

theatres update

delete

create or replace function ms_mv_theatre_ut() returns trigger
security definer language 'plpgsql’ as $%
begin
if old.id = new.id then
perform movie_showtimes_refresh_row(ms.id)
from movie_showtimes ms
where ms,theatre_id = new.1id;
else
perform movie_showtimes_refresh_row(ms,id)
from movie_showtimes ms
where ms.theatre_id = old.1id;
perform movie_showtimes_refresh_row(ms.id)
from movie_showtimes ms
where ms.theatre_id = new,1id;
end if;
return null;
end
$$;

create or replace trigger ms_mv_theatre_ut_t after update on theatres
for each row execute procedure ms_mv_theatre_ut();

Monday, May 26, 2008

action refresh needed?

insert

update

delete

only if the showtime changes

create or replace function ms_mv_orders_ut() returns trigger
security definer language 'plpgsql' as $3%
begin
if old.movie_showtime_id != new.movie_showtime_id then
perform movie_showtimes_refresh_row(old.movie_showtime_id);
perform movie_showtimes_refresh_row(new.movie_showtime_id);
end if;
return null;
end
$$;

create trigger ms_mv_orders_ut_t after update on orders
for each row execute procedure ms_mv_orders_ut();

Monday, May 26, 2008

table action refresh needed?

insert X

ticket_purchases update x

delete X

create or replace function ms_mv_ticket_it() returns trigger
security definer language 'plpgsql’ as $%
begin
perform movie_showtimes_invalidate_row(o.movie_showtime_id)
from orders o
where o,confirmation_code = new.order_confirmation_code;
return null;

end
$5;

create trigger ms_mv_ticket_it_t after insert on purchased_tickets
for each row execute procedure ms_mv_ticket_it();

Monday, May 26, 2008

table action refresh needed?

insert X

ticket_purchases update x

delete X

create or replace function ms_mv_ticket_ut() returns trigger
security definer language 'plpgsql’ as $%
begin
if old.order_confirmation_code != new.order_confirmation_code then
perform movie_showtimes_invalidate_row(o.movie_showtime_id)
from orders o
where o.confirmation_code = new.order_confirmation_code;
perform movie_showtimes_invalidate_row(o.movie_showtime_id)
from orders o
where o.confirmation_code = old.order_confirmation_code;
end if;
return null;
end
$$;

create trigger ms_mv_ticket_ut_t after update on purchased_tickets
for each row execute procedure ms_mv_ticket_ut();

Monday, May 26, 2008

table action refresh needed?

insert X

ticket_purchases update x

delete X

create or replace function ms_mv_ticket_dt() returns trigger
security definer language 'plpgsql’ as $%
begin
perform movie_showtimes_invalidate_row(o.movie_showtime_id)
from orders o
where o.confirmation_code = old.order_confirmation_code;
return null;
end
$$;

create trigger ms_mv_ticket_dt_t after delete on purchased_tickets
for each row execute procedure ms_mv_ticket_dt();

Monday, May 26, 2008

table action refresh needed?

insert

auditoriums update

delete

none needed

Monday, May 26, 2008

Performance

® How good is it!?

Monday, May 26, 2008

Sample Data Set

movies_development=
(select count(*) from theatres) as theatres,
(select count(*) from movie_showtimes) as showtimes,
(select count(*) from orders) as orders,
(select count(*) from purchased_tickets) as tickets;
movies | theatres | showtimes | orders | tickets
-------- e T .

6 | 20201 | 218393 | 218591

Monday, May 26, 2008

by id

explain analyze
select *

from movie_showtimes_with_current_and_sold_out_unmaterialized
where id = 15;

VErsus

explain analyze
select *

from movie_showtimes_with_current_and_sold_out
where id = 15;

Monday, May 26, 2008

unmaterialized

QUERY PLAN

Nested Loop Left Join (cost=6235.14..6237.09 rows=1 width=136)
Cactual time=172.989..173.023 rows=1 loops=1)

- W

L

+++ Lots deleted ...

-

Total runtime: 190.352 ms
(27 rows)

Monday, May 26, 2008

materialized

QUERY PLAN

Index Scan using movie_showtimes_with_current_and_sold_out_pkey on
movie_showtimes_with_current_and_sold_out (cost=0.00..8.27 rows=1 width=477)
(actual time=0,115..0.117 rows=1 loops=1)
Index Cond: (id = 15)
Total runtime: 0.302 ms
(3 rows)

190 / 0.3 = 633 times faster!

Monday, May 26, 2008

by sold_out

explain analyze
select *

from movie_showtimes_with_current_and_sold_out_unmaterialized
where sold_out = false;

VErsus

explain analyze
select *

from movie_showtimes_with_current_and_sold_out
where sold_out = false;

Monday, May 26, 2008

unmaterialized

QUERY PLAN

Hash Left Join (cost=24579.41..26325.91 rows=6737 width=136)
(actual time=2310.343,.2425.242 rows=12954 loops=1)

.++ Lots deleted ...

Total runtime: 2493.216 ms
(29 rows)

Monday, May 26, 2008

materialized

QUERY PLAN

Seq Scan on movie_showtimes_with_current_and_sold_out

Cactual time=0.039..23.180 rows=19954 loops=1)
Filter: (NOT sold_out)

Total runtime: 25.514 ms

(3 rows)

note sequential
scan. if more data
in db, would

2493 / 25.5 = 98 times faster! [

Monday, May 26, 2008

by current

explain analyze
select *

from movie_showtimes_with_current_and_sold_out_unmaterialized
where current = true;

VErsus

explain analyze
select *

from movie_showtimes_with_current_and_sold_out
where current = true;

Monday, May 26, 2008

unmaterialized

QUERY PLAN

Hash Left Join (cost=21738.47,.21966.08 rows=2360 width=136)
(actual time=1234,005..1245.074 rows=1434 loops=1)

L

... Lots deleted ...

Total runtime: 1246.666 ms
(32 rows)

Monday, May 26, 2008

materialized

QUERY PLAN

Seq Scan on movie_showtimes_with_current_and_sold_out
(cost=0.00..695.01 rows=10100 width=477)
Filter: current
Total runtime: 17.777 ms
(3 rows)

1246 / 1 7.7 = 70 times faster!

Monday, May 26, 2008

Performance Roundup

All rows: 85x

By id: 633x

By filter | (sold out): 98x
By filter 2 (current): 70x

Not too shabby!

Monday, May 26, 2008

Part IV:
Getting Advanced

|. Time dependencies
2. Reconciler view

3. Deferring payment with invalidation

4. Periodic Refreshes

5. Cascading materialized views

Monday, May 26, 2008

Time Dependency

® mutable functions mess everything up
® most common is time: e.g., now()

® no triggerable event, just the march of time

Monday, May 26, 2008

expiry column

® we know our domain
® we know when a filter will flip polarity

® put expiry time in a new column

Monday, May 26, 2008

expiry function

create or replace function movie_showtime_expiry(
start_time timestamp with time zone
) returns timestamp with time zone
security definer
language 'plpgsql’ as $%
begin
if start_time < now() then
return null;
else
if start_time > now() + '7 days'::interval then
return start_time - '7 days'::interval;
else
return start_time;
end if;
end if;
end
$$;

Monday, May 26, 2008

new snapshot

create table movie_showtimes_with_current_and_sold_out_and_expiry as
select *, movie_showtime_expiry(start_time) as expiry
from movie_showtimes_with_current_and_sold_out_unmaterialized;

Monday, May 26, 2008

some rigamarole fo

n eW refre S h return expiry.

why do we do this?

we’'ll see soon in
reconciler view.

create or replace function movie_showtimes_refresh_row(
id integer

) returns timestamp with time zone

security definer

language 'plpgsql’ as $%

declare
entry movie_showtimes_with_current_and_sold_out_and_expiry¥rowtype;

begin
delete from movie_showtimes_with_current_and_sold_out_and_expiry ms
where ms.id = id;
select into entry
*, movie_showtime_expiry(ns.start time)
from movie_showtimes_with_current_and_sold_out_unmaterialized ms
where ms,id = id;
insert into movie_showtimes_with_current_and_sold_out_and_expiry
values (entry.*);
return . >
end
$$;

Monday, May 26, 2008

indexes...

alter table movie_showtimes_with_current_and_sold_out_and_expiry
add primary key (id);

create index movie_showtimes_with_current_and_sold_out_expiry_idx
on movie_showtimes_with_current_and_sold_out_and_expiry(expiry);

create index movie_showtimes_with_current_and_sold_out_current_idx
on movie_showtimes_with_current_and_sold_out_and_expiry(current);

create index movie_showtimes_with_current_and_sold_out_sold_out_idx
on movie_showtimes_with_current_and_sold_out_and_expiry(sold_out);

Monday, May 26, 2008

reconciler view

® expiry column exposes implementation

® don’t want clients to filter on it,
or know about it

Monday, May 26, 2008

1. select rows that arent
expired

2. select rows from unmat
v that

3. are expired

4. refresh while selecting
5. union all - don't sort,
unique

6. transparency restored

create or replace view movie_showtimes_with_current_and_sold_out as
select *

from movie_showtimes_with_current_and_sold_out_and_expiry
where (expiry is null or expiry > now())

union all
select *,

from movie_showtimes_with_current_and_sold_out_unmaterialized w
where id in

Monday, May 26, 2008

FAQ

What happens when filtering on columns
that may be invalid?

Do all expired rows get refreshed, or just
those returned by the query!?

Is an outer where clause applied to the
unmaterialized or materialized view!?

s this truly magical?

Monday, May 26, 2008

It didn’t work :(

sometimes, after doing all this work,
selecting from the materialized view is just as slow...

run ‘vacuum analyze’ and try again.

Monday, May 26, 2008

incremental refresh

movies_development=
update movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
set dirty = true
where id in (1, 2);
UPDATE 2

movies_development=
select *
from movie_showtimes_with_current_and_sold_out

where id = 1;
(1 row)

movies_development=
select id, dirty
from movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
where id in (1, 2);
id | dirty

21 t
11 Ff
(2 rows)

Monday, May 26, 2008

query planner smarts

Index Cond: (now() > expiry)
1078.22 rows=263 width=12) (never executed)
pst=21072.30..21075.59 rows=263 width=4) (never executed)
(cost=7807.30..19979.34 rows=218591 width=4) (never executed)
: {(o.confirmation_code)::text = (pt.order_confirmation_code): :text)
can on orders o {cost=0.00..4562.93 rows=218593 width=21) (never executed)
(cost=3793,91..3793.91 rows=218591 width=17) (never executed)
Seq Scan on purchased_tickets pt (cost=0.00..3793,91 rows=218591 width=17)

Filter conditions on unmaterialized view
enable piecemeal refresh.

Monday, May 26, 2008

Who Pays!?

0 base table

Monday, May 26, 2008

id
admin
user _

’ E - /
invalidation -~ [materialized view (2]

id
user

— request

periodic
refresh

sweeper 06000

| |
IO

113

It depends

® data relationship
® who are the users!?

® invalidation : read proportion

Monday, May 26, 2008

| : | relationship

0 base table

Monday, May 26, 2008

id
admin 1 row
user _

. o 2 /
mval/datlon// materialized view

id 1 row

sawme price, different
times, so:

some other factor
decides who pays

115

| :n relationship

Monday, May 26, 2008

admin

user _

in validation//

base table
1 row

id

materialized view

id n rows

paying now is costly,
paying later may be less
costly if you can pay in
chunks.

will the next read be for
all n or just some of n?

116

n : | relationship

0 base table

Monday, May 26, 2008

id
admin n row
user _

. - 2 /
mval/datlon// materialized view
id

1 row
—

view W/ aggreqgate functions

may be very inefficient to
refresh on write.

almost certainly pay later;
unless invalidating user is not
human and you care a lot
about read user’s experience

117

Monday, May 26, 2008

invalidating users

admin users (who you pay)
visitors (who you pay for)

ETL in 2 data warehouse

read users

admin users (who you pay)
visitors (who you pay for)

report generation

in general, people you
pay should pay

..unless it’s
unreasonably costly
to database
resources.

invalidations : reads

® ETL to update/backfill reports:
will the report ever be read!?

blog entry:
ots of edits before any reads!?

® |ong tail data:
widespread invalidation but infrequent reads

of most of it

Monday, May 26, 2008

invalidation

similar to expiry, add a “dirty” column for
bookkeeping

refresh is O(f(n)), marking dirty is O(I)
| refresh for N:I relationships

“end of transaction”

Monday, May 26, 2008

new snapshot

create table movie_showtimes_with_current_and_sold_out_gnd_dirty and_expiry as
select *,
false as dirty,
movie_showtime_expiry(start_time) as expiry,
from movie_showtimes_with_current_and_sold_out_unmaterialized;

Monday, May 26, 2008

invalidation function

create or replace function movie_showtimes_invalidate_row(
id integer
) returns void
security definer
language 'plpgsql’ as $$
begin
update movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry ms

where ms,id = id;
return;

end

$$;

Monday, May 26, 2008

new refresh function

create or replace function movie_showtimes_refresh_row(
id integer
) returns timestamp with time zone
security definer
language 'plpgsql’ as $%
declare
entry movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry¥rowtype;
begin
delete from movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry ms
where ms.id = id;
select into entry
*, false, movie_showtime_expiry(n-.)
from movie_showtimes_with_current_and_sold_out_unmaterialized ms
where ms,.id = id;
insert into movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
values (entry.*);
return . H
end
$$;

Monday, May 26, 2008

indexes...

alter table movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry add primary key (id);

create index movie_showtimes_with_current_and_sold_out_dirty_idx

on movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry(dirty);
create index movie_showtimes_with_current_and_sold_out_expiry_idx

on movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry(expiry);

create index movie_showtimes_with_current_and_sold_out_current_idx

on movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry(current);
create index movie_showtimes_with_current_and_sold_out_sold_out_idx

on movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry(sold_out);

Monday, May 26, 2008

new reconciler view

create or replace view movie_showtimes_with_current_and_sold_out as
select *
from movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
where dirty is false
and (expiry is null or expiry > now())
union all
select *,
false,
movie_showtimes_refresh_row(id)
from movie_showtimes_with_current_and_sold_out_unmaterialized w
where id in (select id
from movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
where dirty is true
or not(expiry is null or now() <= expiry));

Monday, May 26, 2008

table

action

refresh needed?

relation

movie_showtimes

insert

X

update

X

delete

X

movies

insert

update

delete

theatres

insert

update

delete

either

orders

insert

update

delete

ticket_purchases

insert

update

delete

auditoriums

insert

update

delete

Monday, May 26, 2008

lazy refresh

create or replace function ms_mv_ticket_it() returns trigger
security definer language 'plpgsgl’ as $%
begin

perform movie_showtimes_invalidate_row(o.movie showtime 1d)

from orders o
where

return null;
end
$5;

create trigger ms_mv_ticket_it_t after insert on purchased_tickets
for each row execute procedure ms_mv_ticket_it();

Monday, May 26, 2008

pause, ask if anyone
fI<fv130ws why for bullets 1

gotcha!

® |azy via reconciler view will orphan rows
that should be deleted.

® Solution: If you know which rows, you can
delete them in trigger.

® But if you maintain the abstraction, doesn’t
really matter. The orphaned rows will never
be returned.

Monday, May 26, 2008

gotcha again!

® |azy does not work for MV inserts, period.
® No row exists yet to mark as dirty.

® |nserts to base tables that do not add rows
to the MV are OK.

Monday, May 26, 2008

Periodic Refreshes

materialized view
id

L.

periodic
refresh
sweeper

Monday, May 26, 2008 130

periodic refresh

simple: put this in crontab:

select *
from movie_showtimes_with_current_and_sold_out;

note: refreshes one row at a time.
a more efficient refresh function can be built, too.

Monday, May 26, 2008

Other Inefficiencies?

Did you notice a problem with our reconciler view?

Monday, May 26, 2008

It evaluates the unmaterialized view twice.

create or replace view movie_showtimes_with_current_and_sold_out as
select *
from movie_showtimes_with_current_and_sold_out_and_expiry

where (expiry is null or expiry > now()) .

union all first time
select *] < -

movie_showtimes_refresh_row(id) ~— secon d time
from movie_showtimes_with_current_and_sold_out_unmaterialized w
where id in (select id
from movie_showtimes_with_current_and_sold_out_and_expiry
where not(expiry is null or now() <= expiry));

refresh function does the same lookup, by id

Monday, May 26, 2008

see!

create or replace function movie_showtimes_refresh_row(
id integer
) returns timestamp with time zone
security definer
language 'plpgsql’ as $%
declare
entry movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry¥%rowtype;
begin
delete from movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry ms
where ms.id = id;
select into entry
* false, movie_showtime_expiry(ns.ctart time)
from movie_showtimes_with_current_and_sold_out_unmaterialized ms
where ms,id = id;
insert into movie_showtimes_with_current_and_sold_out_and_dirty_and_expiry
values (entry.*);
return . >

s oops!

Monday, May 26, 2008

We returned expiry to facilitate “magic”

Can we return the entire row?

Default PG: “No.” Need to define our own
return type.

Or better, accept whole row, and insert it.

Either way is challenging to avoid double
work.

Monday, May 26, 2008

Cascading

® avoid cascading invalidations multiple times:
update .. where dirty is false and not expired

Monday, May 26, 2008

Other tricks

(esp for ETL and memoizing)

® create empty snapshot table, dirty = true

® report queries will fill materialized view up
incrementally

Monday, May 26, 2008

Explicit Joins

® Unmaterialized view should still be as fast as
possible

® Become one with the query planner

Monday, May 26, 2008

implicit
create or replace view movie_showtimes_with_current_and_sold_out as
select ...
from movie_showtimes ms
movies m,
theatres t,
zip_codes z,

auditoriums a,
left outer join (

select (*) as purchased_tickets_count,

L2

from orders o,
purchased_tickets pt
where pt.,
group by o.
) ptc on (ptc.
where ms.movie_id = m.id
and ms,theatre_id = t,.id
and t.zip_code = z.zip
and ms.room = a.room
and ms.theatre_id = a.theatre_id;

Monday, May 26, 2008

explicit

create or replace view movie_showtimes_with_current_and_sold_out as
select ...
from movie_showtimes ms
join movies m on (ms.movie_id = m,1id)
join theatres t on (ms.theotre 1d = t.1d)
join zip_codes z on (t.zip code = z.z1p)
join auditoriums a on {ms.room = a.room and ms.theatre_id = a.theatre_id)
left outer join (
select (*) as purchased_tickets_count,
from orders o,
purchased_tickets pt
where pt,
group by o.
) ptc on (

Monday, May 26, 2008

what’s the difference!

nothing

unless...

Monday, May 26, 2008

postgresql.conf

join_collapse_limit = 1\

training wheels off

training wheels on

Monday, May 26, 2008

Repeatable Process

|. What can be generated!?

2. What’s can’t?

would be great to not
have to do all of this
work each time.

Monday, May 26, 2008

can generate:

refresh function
invalidation function

control table:
need action!
which action?

trigger definitions (but not functions)

reconciler view

Monday, May 26, 2008

What’s not?

® expiry function - domain specific

® trigger functions - require domain
knowledge to be efficient

But these could be stubbed out to make things easy.

Monday, May 26, 2008

questions?

Monday, May 26, 2008

