
download pdf
• http://chak.org/matviews.pdf

But don’t read ahead yet! :-)

(oh, and use Acrobat, not Mac Preview,
well, check pg 16, got checkmarks? good)

important pages for now: 8 & 16

1Monday, May 26, 2008

Materialized Views
that Work

Dan Chak (dan@chak.org)
PGCon 2008

2Monday, May 26, 2008

Materialized Views
that Work Hard
(so you don’t have to)

Dan Chak (dan@chak.org)
PGCon 2008

3Monday, May 26, 2008

Materialized Views
that Work Efficiently

(so your database can
do other things)

Dan Chak (dan@chak.org)
PGCon 2008

... run a screensaver

... like find aliens (SETI?)

... like think about
retirement

4Monday, May 26, 2008

But let’s talk about me

(aka, who is this guy,
anyway?)

“You’re probably
wondering who I am and
why you should be
listening to me for 3
hours.

Don’t worry, there will be
coffee breaks.”

5Monday, May 26, 2008

Dan Chak’s
lightning fast résumé

CourseAdvisor (Boston) 2005-?
Amazon.com (Seattle) 2003-2005

OpenForce (NYC) 2000-2002

MIT Computer Science & Engineering Bachelors
MIT Human Computer Interfaces Masters

O’Reilly Enterprise Rails
due out in October!

OpenForce - one of the first companies
building (and supporting!) “enterprise
software” based on open source. busted,
ahead of our time, but biz models works
now (MySQL AB anyone?)

led effort to port ArsDigita Community
system to Postgres - anyone heard of it?

Amazon - Oracle

CourseAdvisor - Director of Software Dev

6Monday, May 26, 2008

“The Orbitz of Education”

over 200k visits per day
5-6 million per month

~20%, or 1 million users, do an
“orbitz-style” search

for “what’s available for me?”

one Postgres database

7Monday, May 26, 2008

Thank you’s to

• PG Team for creating a great database

• Jonathan Gardner - wrote the authoritative
“Materialized Views in Postgres”

• Kristof Redei - CourseAdvisor intern who
put these ideas into practice in our
production application

re: PG
- been using it since 1999

re: Garnder
- referenced everywhere
online - worth reading!
- we used it as a starting
point at CA

8Monday, May 26, 2008

what about you?

application developers

web?
dw?

pg developers?

expertise -
expert,
intermediate,
newbie?

materialized a view before?

9Monday, May 26, 2008

Agenda

1. W’s: What, why, when?

2. Some PG Basics

3. An end-to-end implementation

4. Getting Advanced (ie, even faster)

5. Repeatable Process

10Monday, May 26, 2008

Part I:
What, Why, When?

1. Performance,
Performance,
Performance

2. Definitions

3. Applications

4. Expectation Setting

11Monday, May 26, 2008

All About Performance

• O(f(n)) becomes O(1)

• Attack from all angles

attack from all angles means:

- vacuum
- query planning

not just view materialization
but also:
- view optimization
- configuration tweaking

makes queries slow:
joins,
function evaluation f(n)

data warehouse land:
- memoize reporting queries
history doesn’t change, usually
- summary tables

12Monday, May 26, 2008

Definitions

13Monday, May 26, 2008

a repetitive query

14Monday, May 26, 2008

a view is a named query

abstraction

15Monday, May 26, 2008

selecting from a view

16Monday, May 26, 2008

equivalent to...

17Monday, May 26, 2008

View Roundup

• Abstracts a query behind a
view name

• Mentally efficient

• Reusable

• Less prone to error

• Entire query is executed for
each access

• Calculated columns re-
calculated on each access

• Looks like a table, but slow
like a query

What’s good What’s not so good

18Monday, May 26, 2008

Materialized Views?
(sounds like an oxymoron to me)

base tables
(physical)

views

materialized view
(physical)

foo_id
bar_id

foos_bars
id
bar_type_id
amount

bars
id
foo_type_id
bleep

foos

id
name

bar_types
id
name

foo_types

bar_type_id
amount
bar_name
foo_name
foo_id
bar_id

foo_bar_view

19Monday, May 26, 2008

“materialize”

20Monday, May 26, 2008

result:

really means...

• No “subquery” to compute on each access

• A physical table can be indexed, partitioned,
etc. to improve performance further

physical
table!

21Monday, May 26, 2008

Types

• Snapshot

• Very Lazy

• Lazy

• Eager
• Lazy

• Eager

22Monday, May 26, 2008

Snapshot

• Creates a physical table as the result of
selecting everything out of a view

• Refresh at a given interval

• Pro: Easy to set up

• Con: Gets out of sync quickly

• Con: Full refresh can be very expensive

23Monday, May 26, 2008

Very Lazy

• Like snapshot, but only out of sync rows get
updated at refresh time

• Requires keeping track of which rows are
out of sync

• Pro: Lighter refresh than snapshot

• Con: Still gets out of sync quickly

• Con: Need an ancillary table to implement
(or can use dirty column)

24Monday, May 26, 2008

Lazy
• Start with a snapshot

• Refresh rows that are out of sync at the end
of each transaction

• Pro: Always in sync*

• Pro: Only affected rows are updated

• Con: There’s no “after transaction” trigger in
Postgres

* mutable functions excluded
25Monday, May 26, 2008

Eager
• Like Lazy, but update materialized view after

each statement.

• Uses triggers after update, insert, and delete
on all referenced tables

• Pro: Always in sync*

• Con: Bad in one-to-many relationships
updates. Updating rows that feed into an
aggregate cause N refreshes rather than 1.

* mutable functions excluded

common question: can you
use statement level
triggers to get around N:1
relationships?

statement level doesn’t tell
you which rows are
updated.

26Monday, May 26, 2008

Refresh strategies

• Eager

• Lazy

• Very lazy

• Snapshot
Fr

es
hn

es
s

O
ve

rh
ea

d
27Monday, May 26, 2008

Today’s Tutorial
• Snapshot

• Very Lazy

• Lazy

• Eager
• Lazy

• Eager

• Solve mutable function problem for f(time)

• Mimic a post-transaction trigger

also:

none of the four are ideal

today:
sometimes lazy,
sometimes eager

fit to your needs

28Monday, May 26, 2008

Applications

• High throughput web sites

• Data warehousing

• Reporting memoization
memoization can be
tricky

will be discussed, but...

focus in talk will be on
real-time production
applications

29Monday, May 26, 2008

Data Warehousing ETL

• Automatically build summary tables

• Automatically keep summary tables up to
date

• Memoize results of recurring queries

30Monday, May 26, 2008

High Performance Production
Sites

• Reduces bottleneck O(f(n)) query to O(1).

31Monday, May 26, 2008

Expectation Setting

• Billions of dollars

• 6-pack abs

• 100-1000x performance increase typical• 100-1000x performance increase typical

32Monday, May 26, 2008

Really!

• 100-1000x performance increase typical

Depends on how slow
your query is to begin
with.

Also depends on how
heavily loaded your
database is.

33Monday, May 26, 2008

Compare

• executing
arbitrarily
complex query
on a loaded
database

• selecting a single
row out of an
indexed table

5ms1, 2, 3... 5s?

34Monday, May 26, 2008

Part II: PG Basics

1. Query Planner

2. Stored procedures

3. Triggers

35Monday, May 26, 2008

Query Planner

• explain

• explain analyze

36Monday, May 26, 2008

37Monday, May 26, 2008

38Monday, May 26, 2008

explain

• returns the query plan

• fast

• units are mythical

39Monday, May 26, 2008

40Monday, May 26, 2008

Time to first
result record

Time to last
result record

41Monday, May 26, 2008

explain analyze

• explain “plus”

• actually runs the query (without commit)

• adds time in milliseconds

42Monday, May 26, 2008

43Monday, May 26, 2008

find the slow operation

seq scan? add index

operations out of order?
-> explicit join syntax

can’t solve? matview!

explain/analyze should be an
integral part of development
process

new queries or old bottleneck
ones

used throughout talk to gauge
performance empirically

before materializing,
note:

sometimes a vacuum
analyze can make a
big difference

44Monday, May 26, 2008

vacuum analyze

• each query generates statistics

• vacuum compacts database -- run nightly!

• vacuum analyze does same, also re-orders
data on disk to improve performance based
on statistics

• do everything you can to avoid materializing
a view!

45Monday, May 26, 2008

Stored Procedures

• procedural programming inside the DB

• PL/pgSQL, PL/TCL, PL/Java, etc.

• This talk: learn through examples

46Monday, May 26, 2008

Triggers

CREATE TRIGGER name { BEFORE | AFTER } { event [OR ...] }
 ON table [FOR [EACH] { ROW | STATEMENT }]
 EXECUTE PROCEDURE funcname (arguments)

47Monday, May 26, 2008

48Monday, May 26, 2008

Part III: End to End

1. Considerations

2. Getting into form

3. The initial snapshot

4. Refresh function

5. Triggered Refresh

6. Indexing

7. Performance

Note: This will be an eager implementation!

49Monday, May 26, 2008

Warning

• Although magical, obvious in retrospect

• Couple aha! moments, but easy once you
know how

50Monday, May 26, 2008

to make this interesting,
need to use a real
application with some
complexity.

discuss each table in turn,
then introduce common
query: current showtimes

id
name
phone_number

theatres

id
name
length_minutes
rating_id

movies

id
movie_id
theatre_id
room
start_time

movie_showtimes

id
confirmation_code
purchase_price_cents

purchased_tickets

theatre_id
room
seats_available

auditoriums

id
rating_name
description

ratings

confirmation_code
movie_showtime_id
movie_id
theatre_id
auditorium_id
room
start_time

orders

id
name

payment_typeszip
city
state

zip_codes

name
line_1
line_2
city
state
zip_code

addresses

51Monday, May 26, 2008

52Monday, May 26, 2008

Considerations

• Should be transparent to end-user, drop-in
replacement.

• Always accurate, up to date

53Monday, May 26, 2008

Getting into form

• view should have primary key

• recast filters as columns

• rename as _unmaterialized

54Monday, May 26, 2008

pkey is main table pkey,
from movie_showtimes

have filters in where
clause:
1 - not sold out
2 - current

55Monday, May 26, 2008

56Monday, May 26, 2008

57Monday, May 26, 2008

Looks like
a table :)

Feels like
a view :(

58Monday, May 26, 2008

Initial Snapshot

59Monday, May 26, 2008

id is pkey
columns for filtering

nothing here because this is a real table!

60Monday, May 26, 2008

Indexing

• materialized view is a regular table, so
benefits greatly from indexes

• index minimally: pkey, filter columns

• also index: anything you may search on

• avoid over-indexing -- performance
performance performance!

61Monday, May 26, 2008

62Monday, May 26, 2008

Constraints? RI?

• materialized view should not have
constraints or enforced foreign key
references

• MV can be temporarily stale

• base tables should have these already, so just
slows things down

63Monday, May 26, 2008

Initial Comparisons

versus

64Monday, May 26, 2008

65Monday, May 26, 2008

66Monday, May 26, 2008

Initial Comparisons

versus

1,457ms

17ms

materialized view is 85 times faster!

67Monday, May 26, 2008

Refresh Function

The materialized view is fast,
but it’s not accurate

68Monday, May 26, 2008

1

2

3

69Monday, May 26, 2008

70Monday, May 26, 2008

1

2

71Monday, May 26, 2008

Triggered Refresh

• refresh function works great, but we need it
to happen automatically

• accomplished with triggers attached to all
base tables

72Monday, May 26, 2008

Refresh Triggers 101

• is a refresh needed for this operation?

• is it only needed under certain conditions?

73Monday, May 26, 2008

Triggers - old, new

• insert trigger:
refresh new row

• delete trigger:
refresh old row

• update trigger:
if pkey changes, refresh old, new; else either

74Monday, May 26, 2008

movie_showtimes insert

Why not call refresh function
directly?

1. Wrapper allows additional
logic to be injected where needed.

2. Trigger functions must return
null or row. We’re going to play
w/ return val of refresh function
soon.

75Monday, May 26, 2008

movie_showtimes
delete

76Monday, May 26, 2008

movie_showtimes
update

77Monday, May 26, 2008

and repeat...

• same process for every table

• except when not needed

78Monday, May 26, 2008

to make this interesting,
need to use a real
application with some
complexity.

discuss each table in turn,
then introduce common
query: current showtimes

id
name
phone_number

theatres

id
name
length_minutes
rating_id

movies

id
movie_id
theatre_id
room
start_time

movie_showtimes

id
confirmation_code
purchase_price_cents

purchased_tickets

theatre_id
room
seats_available

auditoriums

id
rating_name
description

ratings

confirmation_code
movie_showtime_id
movie_id
theatre_id
auditorium_id
room
start_time

orders

id
name

payment_typeszip
city
state

zip_codes

name
line_1
line_2
city
state
zip_code

addresses

79Monday, May 26, 2008

table action refresh needed?

movie_showtimes
insert x

update x

delete x

movies
insert

update x

delete

theatres
insert

update x

delete

orders
insert

update x

delete

ticket_purchases
insert x

update x

delete x

auditoriums
insert

update

delete

18 possible triggers,
only 9 needed

building this table is a big
help.

fewer refreshes = faster db,
faster user-perceived
performance

80Monday, May 26, 2008

table action refresh needed?

movies
insert

update x

delete

81Monday, May 26, 2008

table action refresh needed?

theatres
insert

update x

delete

82Monday, May 26, 2008

table action refresh needed?

orders
insert

update x

delete

only if the showtime changes

83Monday, May 26, 2008

table action refresh needed?

ticket_purchases
insert x

update x

delete x

84Monday, May 26, 2008

table action refresh needed?

ticket_purchases
insert x

update x

delete x

85Monday, May 26, 2008

table action refresh needed?

ticket_purchases
insert x

update x

delete x

86Monday, May 26, 2008

table action refresh needed?

auditoriums
insert

update

delete

none needed

87Monday, May 26, 2008

Performance

• How good is it?

88Monday, May 26, 2008

Sample Data Set

89Monday, May 26, 2008

by id

versus

90Monday, May 26, 2008

unmaterialized

91Monday, May 26, 2008

materialized

190 / 0.3 = 633 times faster!

92Monday, May 26, 2008

by sold_out

versus

93Monday, May 26, 2008

unmaterialized

94Monday, May 26, 2008

materialized

note sequential
scan. if more data
in db, would
become index scan
and be even faster2493 / 25.5 = 98 times faster!

95Monday, May 26, 2008

by current

versus

96Monday, May 26, 2008

unmaterialized

97Monday, May 26, 2008

materialized

1246 / 17.7 = 70 times faster!

98Monday, May 26, 2008

Performance Roundup

• All rows: 85x

• By id: 633x

• By filter 1 (sold out): 98x

• By filter 2 (current): 70x

Not too shabby!

99Monday, May 26, 2008

Part IV:
Getting Advanced

1. Time dependencies

2. Reconciler view

3. Deferring payment with invalidation

4. Periodic Refreshes

5. Cascading materialized views

100Monday, May 26, 2008

Time Dependency

• mutable functions mess everything up

• most common is time: e.g., now()

• no triggerable event, just the march of time

101Monday, May 26, 2008

expiry column

• we know our domain

• we know when a filter will flip polarity

• put expiry time in a new column

102Monday, May 26, 2008

expiry function

103Monday, May 26, 2008

new snapshot

104Monday, May 26, 2008

new refresh
some rigamarole to
return expiry.

why do we do this?

we’ll see soon in
reconciler view.

105Monday, May 26, 2008

indexes...

106Monday, May 26, 2008

reconciler view

• expiry column exposes implementation

• don’t want clients to filter on it,
or know about it

107Monday, May 26, 2008

reconciler view
1. select rows that aren’t
expired
2. select rows from unmat
v that
3. are expired
4. refresh while selecting
5. union all - don’t sort,
unique
6. transparency restored

108Monday, May 26, 2008

FAQ

• What happens when filtering on columns
that may be invalid?

• Do all expired rows get refreshed, or just
those returned by the query?

• Is an outer where clause applied to the
unmaterialized or materialized view?

• Is this truly magical?

109Monday, May 26, 2008

It didn’t work :(

sometimes, after doing all this work,
selecting from the materialized view is just as slow...

run ‘vacuum analyze’ and try again.

110Monday, May 26, 2008

incremental refresh

111Monday, May 26, 2008

query planner smarts

Filter conditions on unmaterialized view
enable piecemeal refresh.

112Monday, May 26, 2008

Who Pays?

DB

id

...

base table

id

...

materialized view

admin
user

invalidation

user
request

periodic
refresh
sweeper

11

12

10 13 161-3 1...

113Monday, May 26, 2008

It depends

• data relationship

• who are the users?

• invalidation : read proportion

114Monday, May 26, 2008

1 : 1 relationship

DB

id

...

base table

id

...

materialized view

admin
user

invalidation

user
request

periodic
refresh
sweeper

11

12

10 13 161-3 1...

1 row

1 row

same price, different
times, so:

some other factor
decides who pays

115Monday, May 26, 2008

1 : n relationship

DB

id

...

base table

id

...

materialized view

admin
user

invalidation

user
request

periodic
refresh
sweeper

11

12

10 13 161-3 1...

1 row

n rows

paying now is costly,
paying later may be less
costly if you can pay in
chunks.

will the next read be for
all n or just some of n?

116Monday, May 26, 2008

n : 1 relationship

DB

id

...

base table

id

...

materialized view

admin
user

invalidation

user
request

periodic
refresh
sweeper

11

12

10 13 161-3 1...

view w/ aggregate functions

may be very inefficient to
refresh on write.

almost certainly pay later,
unless invalidating user is not
human and you care a lot
about read user’s experience

n row

1 row

117Monday, May 26, 2008

invalidating users
• admin users (who you pay)

• visitors (who you pay for)

• ETL in a data warehouse

in general, people you
pay should pay

...unless it’s
unreasonably costly
to database
resources.

read users
• admin users (who you pay)

• visitors (who you pay for)

• report generation

118Monday, May 26, 2008

invalidations : reads

• ETL to update/backfill reports:
will the report ever be read?

• blog entry:
lots of edits before any reads?

• long tail data:
widespread invalidation but infrequent reads
of most of it

119Monday, May 26, 2008

invalidation

• similar to expiry, add a “dirty” column for
bookkeeping

• refresh is O(f(n)), marking dirty is O(1)

• 1 refresh for N:1 relationships

• “end of transaction”

120Monday, May 26, 2008

new snapshot

121Monday, May 26, 2008

invalidation function

122Monday, May 26, 2008

new refresh function

123Monday, May 26, 2008

indexes...

124Monday, May 26, 2008

new reconciler view

125Monday, May 26, 2008

table action refresh needed? relation type

movie_showtimes
insert x

1:1

eager

update x eager

delete x eager

movies
insert

1:Nupdate x either

delete

theatres
insert

1:Nupdate x either

delete

orders
insert

1:1update x eager

delete

ticket_purchases
insert x

N:1

lazy

update x lazy

delete x lazy

auditoriums
insert

-update

delete

126Monday, May 26, 2008

lazy refresh

127Monday, May 26, 2008

gotcha!

• Lazy via reconciler view will orphan rows
that should be deleted.

• Solution: If you know which rows, you can
delete them in trigger.

• But if you maintain the abstraction, doesn’t
really matter. The orphaned rows will never
be returned.

pause, ask if anyone
knows why for bullets 1
& 3.

128Monday, May 26, 2008

gotcha again!

• Lazy does not work for MV inserts, period.

• No row exists yet to mark as dirty.

• Inserts to base tables that do not add rows
to the MV are OK.

129Monday, May 26, 2008

Periodic Refreshes

DB

id

...

base table

id

...

materialized view

admin
user

invalidation

user
request

periodic
refresh
sweeper

11

12

10 13 161-3 1...

130Monday, May 26, 2008

periodic refresh

simple: put this in crontab:

note: refreshes one row at a time.
a more efficient refresh function can be built, too.

131Monday, May 26, 2008

Other Inefficiencies?

Did you notice a problem with our reconciler view?

132Monday, May 26, 2008

It evaluates the unmaterialized view twice.

first time
second time

refresh function does the same lookup, by id

133Monday, May 26, 2008

see?

oops!
134Monday, May 26, 2008

• We returned expiry to facilitate “magic”

• Can we return the entire row?

• Default PG: “No.” Need to define our own
return type.

• Or better, accept whole row, and insert it.

• Either way is challenging to avoid double
work.

135Monday, May 26, 2008

Cascading

• avoid cascading invalidations multiple times:
update .. where dirty is false and not expired

136Monday, May 26, 2008

Other tricks
(esp for ETL and memoizing)

• create empty snapshot table, dirty = true

• report queries will fill materialized view up
incrementally

137Monday, May 26, 2008

Explicit Joins

• Unmaterialized view should still be as fast as
possible

• Become one with the query planner

138Monday, May 26, 2008

implicit

139Monday, May 26, 2008

explicit

140Monday, May 26, 2008

what’s the difference?

nothing

unless...

141Monday, May 26, 2008

postgresql.conf

training wheels on training wheels off

142Monday, May 26, 2008

Repeatable Process

1. What can be generated?

2. What’s can’t?

would be great to not
have to do all of this
work each time.

143Monday, May 26, 2008

can generate:
• refresh function

• invalidation function

• control table:
need action?
which action?

• trigger definitions (but not functions)

• reconciler view

144Monday, May 26, 2008

What’s not?

• expiry function - domain specific

• trigger functions - require domain
knowledge to be efficient

But these could be stubbed out to make things easy.

145Monday, May 26, 2008

questions?

146Monday, May 26, 2008

