
1

PostgreSQL upgrade
project

Zdeněk Kotala
Revenue Product Engineer
Sun Microsystems

1

2

Agenda

• Overview
• Catalog upgrade
• Storage upgrade
• Others

3

Overview

4

Goals

• Minimal downtime
• No extra disk space
• No old version
• Easy to use

5

Possible design

• Standalone product
> Separate binaries which converts database

cluster from one version to another.

• PostgreSQL offline upgrade mode
> Special mode like bootstrap only on already

created cluster.
> Data are binary converted.

• PostgreSQL online data conversion
> PostgreSQL converts data structure on the

fly. Data are converted on background.
> PostgreSQL will be able to read old structure.

6

Possible design

• Advantages
> No or minimal impact on core

• Disadvantages
> Difficult maintenance – synchronization with

core generates a lot of double work
> Two code could generate inconsistence
> Database is offline during upgrade –

downtime depends on database size
> Does not fit with PostgreSQL release cycle
> No responsibility to implement changes from

core

Standalone product

7

Possible design

• Advantages
> Integrated into core – can reuse server code
> No extra application
> Middle impact on core (mostly new functions)
> Faster then data export/import

• Disadvantage
> Database is offline during upgrade –

downtime depends on database size

PostgreSQL offline upgrade mode

8

Possible design

• Advantage
> Minimal downtime
> Downtime doesn't depend on database size

• Disadvantage
> How to convert catalog content a structure
> Online data conversion has performance

impact depends on implementation

PostgreSQL online data conversion

9

...and the winner is

?

10

Catalog upgrade

11

List of affected objects

• Control file
• Flat files
• Directory structure
• Catalog tables
• Configuration

12

Current solutions

• Pg_migrator or pg_upgrade.sh
> Only works for 8.1->8.2
> Does not support data layout changes

(inet/cidr)
> Fast (short downtime)
> Problem with tablespaces (keep data on one

mount point)
> Problem with TOAST tables (TOAST pointer)
> Depends on private interfaces

13

How pg_upgrade.sh works*

1)Dump metadata
2)Save relation map (relfilenode<->name)
3)Export control file data
4)Initdb new database cluster
5)Freeze database cluster
6)Copy CLOG
7)Set control data (XID,OID,XLOG ...)
8)Create databases, users ...

*Simplified version without tablespaces

14

How pg_upgrade.sh works (cont.)

9)Protect TOAST tables (need to have
same relfilenode)

10)Create tables, views ...
11)Adjust relfilenode for TOAST tables,idx
12)Copying and renaming data files
13)Done

15

How upgrade should work

pg_ctl -D /var/postgres upgrade

16

How upgrade should work II.

check directory /var/postgres ... ok (version 822)

check subdirectories ... ok

creating template1 database in /tmp/pokus/base/1 ... ok

initializing pg_authid ... ok

initializing dependencies ... ok

creating system views ... ok

loading system objects' descriptions ... ok

creating conversions ... ok

creating dictionaries ... ok

setting privileges on built-in objects ... ok

creating information schema ... ok

vacuuming database template1 ... ok

upgrading pg_global database ... ok

upgrading template0 ... ok

upgrading postgres ... ok

upgrading super_db ... ok

17

Control file

• Compatibility verification (BLCKSZ,
MAXALIGN, FP format...)
• BLCKSZ, RELSEGSIZE, TOAST MAX

CHUNK SIZE could be modified during
upgrade
• Translate XID, OID, LC_COLLATE, LSN...

18

Catalogs

• Structure
> Use postgres.bki to initialize catalog
> Keep old data files for data transfer

• Contents
> User metadata will be transferred and

converted to the new structure
> Strict rules for systems OID modification
> Some kind of changes is not allowed (e.g.

binary format change must invoke new data
type – new OID)

19

Configuration files

• postgresql.conf
> New GUC variable will contain default value
> Obsolete GUC variable will be ignored –

warning in log file
> Out of range values will be set to default
> Problem is with different meaning of values

• pg_hba.conf, pg_ident.conf
> Depends on kind of change ...

20

Storage upgrade

21

Page Layout Structures

BLCKSZ

PageHeaderData

ItemIdData

HeapTupleHeaderData

IndexTupleData

TOAST_MAX_CHUNK_SIZE

*OpaqueData

*MaxItemSize

varatt*

22

Storage dependency graph

Heap TOAST
TOAST
index

XLOG(WAL)

Indexes

CLOG

LSN LSN LSN LSN

XMIN
XMAX

XMIN
XMAX

TID TID
TOAST
pointer

23

Storage upgrade methods

• On line
> Read only mode
> Read Old, Write New
> On fly page layout conversion

• Off line
> Inside heap tuple reorganization
> Heap translation
> Retoasting
> Reindexing

24

Storage upgrade methods

• Need to learn PostgreSQL to work with
old data structures
• Add extra code which could slow down

general performance
• Easy return back to prior version
• Problem with catalog

Read Only Mode

25

Storage upgrade methods

• Based on Read Only Mode
• Modified data are written in new format

Read Old, Write New

26

Storage upgrade methods

#define SizeOfPageHeaderData(page) \
(PageGetPageLayoutVersion(page) == 4 ? \

(offsetof(PageHeaderData_04, pd_linp[0])) :\
(offsetof(PageHeaderData_03, pd_linp[0])))

typedef struct HeapTupleData
{

uint32 t_len; /* length of *t_data */
ItemPointerData t_self; /* SelfItemPointer */
Oid t_tableOid; /* table the tuple came from */
uint16 t_version; /* page layout version */
HeapTupleHeader t_data; /* -> tuple header and data */

} HeapTupleData;

Read Only Mode - example

27

Storage upgrade methods

• Possible only when converted data fits on
same page.
• Not possible between layout version 3

and 4 (8.2->8.3).
> Pageheader has been extended to 24 bytes.
> Index tuples does not fit on a page, different

toast chunk size and heap tuples does not fit
on machines with MAXALIGN=8 (e.g. SPARC)

• WAL generates a lot of full page writes.

Online Page Layout Conversion

28

Storage upgrade methods

• Convertor hook in ReadBuffer_common
{

smgrread(reln->rd_smgr, blockNum, (char *) bufBlock);
/* Page Layout Convertor hook. We assume

 that page version is on same place. */
if(plc_hook && PageGetPageLayoutVersion(reln,bufBlock)

!= PG_PAGE_LAYOUT_VERSION)
{

plc_hook((char *)bufBlock);
bufHdr->flags |= (BM_DIRTY | BM_JUST_DIRTIED);
log_newpage(&reln->rd_node, blockNum ,bufBlock);

}
}

Online Page Layout Conversion - example

29

Storage upgrade methods

• Similar to page layout conversion, but
tuple which does not fit on the page have
to be moved to a new page
• Requires reindex (only if inter page

transfer happened) or introduce inter
page redirection pointer
• Requires WAL logging
• Does not need extra disk space

Inner heap tuples reorganization

30

Storage upgrade methods

• Tuples are translated from old heap to
the newly created
• Possible to change BLCKSZ, RELSEGSIZE
• Does not require WAL logging
• Needs space for a new table (old indexes

could be dropped or continuously drop
segments)
• If TOAST table is translated (has new

relfilenode), TOAST pointers must be
updated

Heap translation

31

Storage upgrade methods

• Needed when TOAST_MAX_CHUNK_SIZE
has been changed
• More possible solutions:
> Add TOAST_MAX_CHUNK_SIZE to pg_class
> Adjust toast_fetch_datum() accept different

size
> Combine retoasting with heap translation

• Take care about TOAST pointer
• Requires full index scan on original

TOAST IDX related to the TOAST table

Retoasting

32

Storage upgrade methods

• Reindexing is necessary every time when
> tid of any tuple has been changed
> index structure has been changed
> index tuples does not fit on a new page

layout

• Reindex could be performed on the
running system

Reindexing

33

Write Ahead Log (WAL/XLOG)

• CHECKPOINT is last operation on
shutdown. All changes are applied and
WAL files can be dropped.
• Needs to keep XLOG pointer to protect

correct recovery (LSN dependency on
WAL)

34

Commit log (CLOG)

• Array of transactions status
• No changes for long time – stable
• Some upgrade methods could produce a

frozen database, afterwards CLOG files
could be removed

35

Other

36

Stored procedures

• Changes in PL languages
> All changes are usually backward compatible
> Possible to add language version into catalog

and delivery more *.so
> Problem with procedures written in C

37

Tsearch2

• Any change in FTS configuration or
dictionary implies regeneration of
affected tsvectors fields. Unfortunately,
there is not relation between tsvector and
original source.

38

Proposed upgrade devel policy

• Each submitted patch MUST handle
upgrade
• All affected structures should have

version number
• Binaries should work with multiple

versions of database clusters (e.g.
pg_controldata)
• System OIDs in catalog shouldn't be

reused

39

References
http://pgfoundry.org/projects/pg-migrator/

http://src.opensolaris.org/source/xref/sfw/usr/src/cmd/postgres/postgresql-upgrade/

http://wiki.postgresql.org/wiki/In-place_upgrade

http://pgfoundry.org/projects/pg-migrator/
http://src.opensolaris.org/source/xref/sfw/usr/src/cmd/postgres/postgresql-upgrade/
http://wiki.postgresql.org/wiki/In-place_upgrade

40

PostgreSQL upgrade
project

Zdeněk Kotala
zdenek.kotala@sun.com

40

