PostgreSQL upgrade
project

Zdenék Kotala
Revenue Product Engineer
Sun Microsystems

Agenda

» Overview

- Catalog upgrade
- Storage upgrade
* Others

Overview

Goals

» Minimal downtime
* No extra disk space
» No old version

- Easy to use

Possible design

- Standalone product
> Separate binaries which converts database
cluster from one version to another.
 PostgreSQL offline upgrade mode

> Special mode like bootstrap only on already
created cluster.

> Data are binary converted.

» PostgreSQL online data conversion

> PostgreSQL converts data structure on the
fly. Data are converted on background.

> PostgreSQL will be able to read old structure.

Possible design
Standalone product

- Advantages
> No or minimal impact on core

- Disadvantages

> Difficult maintenance - synchronization with
core generates a lot of double work

> Two code could generate inconsistence

> Database is offline during upgrade -
downtime depends on database size

> Does not fit with PostgreSQL release cycle

> No responsibility to implement changes from
core

Possible design
PostgreSQL offline upgrade mode

- Advantages
> Integrated into core - can reuse server code
> No extra application
> Middle impact on core (mostly new functions)
> Faster then data export/import

- Disadvantage

> Database is offline during upgrade -
downtime depends on database size

Possible design
PostgreSQL online data conversion

- Advantage
> Minimal downtime
> Downtime doesn't depend on database size

- Disadvantage
> How to convert catalog content a structure

> Online data conversion has performance
impact depends on implementation

...and the winner is

Catalog upgrade

List of affected objects

 Control file

- Flat files

» Directory structure
- Catalog tables

» Configuration

mig rc;y;tems

Current solutions

- Pg_migrator or pg _upgrade.sh
> Only works for 8.1->8.2

> Does not support data layout changes
(inet/cidr)

> Fast (short downtime)

> Problem with tablespaces (keep data on one
mount point)

> Problem with TOAST tables (TOAST pointer)
> Depends on private interfaces

mig rc;y;tems

How pg_upgrade.sh works*

1)Dump metadata

2)Save relation map (relfilenode<->name)
3)Export control file data

4)Initdb new database cluster

5)Freeze database cluster

6)Copy CLOG

/)Set control data (XID,OID,XLOG ...)
8)Create databases, users ...

*Simplified version without tablespaces

How pg_upgrade.sh works (cont.)

9)Protect TOAST tables (need to have
same relfilenode)

10)Create tables, views ...
11)Adjust relfilenode for TOAST tables,idx

)
12)Copying and renaming data files
13)Done

How upgrade should work

pg_ctl -D /var/postgres upgrade

How upgrade should work Il.

check directory /var/postgres ... ok (version 822)
check subdirectories ... ok

creating templatel database in /ftmp/pokus/base/1 ... ok
initializing pg_authid ... ok

initializing dependencies ... ok

creating system views ... ok

loading system objects' descriptions ... ok
creating conversions ... ok

creating dictionaries ... ok

setting privileges on built-in objects ... ok
creating information schema ... ok

vacuuming database templatel ... ok

upgrading pg_global database ... ok

upgrading template0 ... ok

upgrading postgres ... ok

upgrading super_db ... ok

16

mig rc;y;tems

Control file

» Compatibility verification (BLCKSZ,
MAXALIGN, FP format...)

- BLCKSZ, RELSEGSIZE, TOAST MAX
CHUNK SIZE could be modified during
upgrade

- Translate XID, OID, LC COLLATE, LSN...

Catalogs

 Structure
> Use postgres.bki to initialize catalog
> Keep old data files for data transfer

» Contents

> User metadata will be transferred and
converted to the new structure

> Strict rules for systems OID modification

> Some kind of changes is not allowed (e.qg.
binary format change must invoke new data
type - new OID)

Configuration files

» postgresqgl.conf
> New GUC variable will contain default value

> Obsolete GUC variable will be ignored -
warning in log file

> Out of range values will be set to default
> Problem is with different meaning of values

* pg_hba.conf, pg _ident.conf
> Depends on kind of change ...

Storage upgrade

Page Layout Structures

BLCKSZ
PageHeaderData TOAST MAX CHUNK SIZE
ltemldData *MaxltemSize
IndexTupleData *OpaqueData

varatt*
HeapTupleHeaderData

21

Storage dependency graph

XLOG(WAL)

LSN LSN LSN

LSN

TOAST
Heap | pointer “1 TOAST TID

XMIN XMIN
XMAX XMAX

Storage upgrade methods

* On line
> Read only mode
> Read Old, Write New
> On fly page layout conversion

* Off line

> |nside heap tuple reorganization
> Heap translation

> Retoasting

> Reindexing

Storage upgrade methods
Read Only Mode

* Need to learn PostgreSQL to work with
old data structures

- Add extra code which could slow down
general performance

» Easy return back to prior version
* Problem with catalog

Storage upgrade methods
Read Old, Write New

- Based on Read Only Mode
» Modified data are written in new format

Storage upgrade methods
Read Only Mode - example

#define SizeOfPageHeaderData(page) \
(PageGetPagelLayoutVersion(page) == 47\
(offsetof(PageHeaderData 04, pd_linp[0])) :\
(offsetof(PageHeaderData 03, pd_linp[0])))

typedef struct HeapTupleData

{
uint32 t len; /* length of *t_data */
ltemPointerData t _self; /* SelfltemPointer */
Oid t tableOid; /* table the tuple came from */
uintle t version; /* page layout version */

HeapTupleHeader t_data; /* -> tuple header and data */
} HeapTupleData;

26

Storage upgrade methods
Online Page Layout Conversion

* Possible only when converted data fits on
same page.

* Not possible between layout version 3
and 4 (8.2->8.3).

> Pageheader has been extended to 24 bytes.

> |ndex tuples does not fit on a page, different
toast chunk size and heap tuples does not fit
on machines with MAXALIGN=8 (e.g. SPARC)

- WAL generates a lot of full page writes.

Storage upgrade methods
Online Page Layout Conversion - example

+ Convertor hook in ReadBuffer common
{

smgrread(reln->rd_smgr, blockNum, (char *) bufBlock);
/* Page Layout Convertor hook. We assume
that page version is on same place. */
if(plc_hook && PageGetPagelayoutVersion(reln,bufBlock)
= PG_PAGE_LAYOUT VERSION)

{
plc_hook((char *)bufBlock);
bufHdr->flags |= (BM_DIRTY | BM_JUST DIRTIED);
log_newpage(&reln->rd_node, blockNum ,bufBlock);
}

28

Storage upgrade methods
Inner heap tuples reorganization

» Similar to page layout conversion, but
tuple which does not fit on the page have
to be moved to a new page

- Requires reindex (only if inter page
transfer happened) or introduce inter
page redirection pointer

- Requires WAL logging
» Does not need extra disk space

Storage upgrade methods
Heap translation

» Tuples are translated from old heap to
the newly created

» Possible to change BLCKSZ, RELSEGSIZE
» Does not require WAL logging

- Needs space for a new table (old indexes
could be dropped or continuously drop
segments)

- If TOAST table is translated (has new
relfilenode), TOAST pointers must be
updated

Storage upgrade methods
Retoasting

* Needed when TOAST MAX CHUNK SIZE

has been changed

- More possible solutions:
> Add TOAST MAX CHUNK SIZE to pg class

> Adjust toast_fetch_datum() accept different
Size

> Combine retoasting with heap translation
- Take care about TOAST pointer

» Requires full index scan on original
TOAST IDX related to the TOAST table

Storage upgrade methods
Reindexing

» Reindexing Is necessary every time when
> tid of any tuple has been changed
> index structure has been changed
> Index tuples does not fit on a new page
layout

- Reindex could be performed on the
running system

£5%,
mig rG;y;te‘ms

Write Ahead Log (WAL/XLOG)

» CHECKPOINT Is last operation on
shutdown. All changes are applied and
WAL files can be dropped.

* Needs to keep XLOG pointer to protect
corre)ct recovery (LSN dependency on
WAL

Commit log (CLOG)

 Array of transactions status
- No changes for long time - stable

- Some upgrade methods could produce a
frozen database, afterwards CLOG files
could be removed

Other

Stored procedures

» Changes in PL languages
> All changes are usually backward compatible

> Possible to add language version into catalog
and delivery more *.s0

> Problem with procedures written in C

Tsearch?2

- Any change in FTS configuration or
dictionary implies regeneration of
affected tsvectors fields. Unfortunately,
there is not relation between tsvector and
original source.

mic I'GS:,'SH.“IT\S

Proposed upgrade devel policy

- Each submitted patch MUST handle
upgrade

 All affected structures should have
version number

» Binaries should work with multiple
versions of database clusters (e.q.
pg_controldata)

» System OIDs in catalog shouldn't be
reused

References

http://pgfoundry.org/projects/pg-migrator/
http://src.opensolaris.org/source/xref/sfw/usr/src/cmd/postgres/postgresql-upgrade/
http://wiki.postgresql.org/wiki/In-place_upgrade

39

http://pgfoundry.org/projects/pg-migrator/
http://src.opensolaris.org/source/xref/sfw/usr/src/cmd/postgres/postgresql-upgrade/
http://wiki.postgresql.org/wiki/In-place_upgrade

PostgreSQL upgrade
project

Zdenek Kotala
zdenek.kotala@sun.com

