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Overview
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Goals

• Minimal downtime
• No extra disk space
• No old version 
• Easy to use
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Possible design

• Standalone product
> Separate binaries which converts database 

cluster from one version to another.

• PostgreSQL offline upgrade mode
> Special mode like bootstrap only on already 

created cluster.
> Data are binary converted.

• PostgreSQL online data conversion
> PostgreSQL converts data structure on the 

fly. Data are converted on background.
> PostgreSQL will be able to read old structure.
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Possible design

• Advantages
> No or minimal impact on core

• Disadvantages
> Difficult maintenance – synchronization with 

core generates a  lot of double work
> Two code could generate inconsistence
> Database is offline during upgrade – 

downtime depends on database size
> Does not fit with PostgreSQL release cycle
> No responsibility to implement changes from 

core

Standalone product
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Possible design

• Advantages
> Integrated into core – can reuse server code
> No extra application
> Middle impact on core (mostly new functions)
> Faster then data export/import

• Disadvantage
> Database is offline during upgrade – 

downtime depends on database size

PostgreSQL offline upgrade mode
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Possible design

• Advantage
> Minimal downtime
> Downtime doesn't depend on database size

• Disadvantage
> How to convert catalog content a structure
> Online data conversion has performance 

impact depends on implementation

PostgreSQL online data conversion
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...and the winner is

?
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Catalog upgrade
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List of affected objects

• Control file
• Flat files
• Directory structure
• Catalog tables
• Configuration
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Current solutions

• Pg_migrator or pg_upgrade.sh
> Only works for 8.1->8.2  
> Does not support data layout changes 

(inet/cidr)
> Fast (short downtime)
> Problem with tablespaces (keep data on one 

mount point)
> Problem with TOAST tables (TOAST pointer)
> Depends on private interfaces
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How pg_upgrade.sh works*

1)Dump metadata
2)Save relation map (relfilenode<->name)
3)Export control file data
4)Initdb new database cluster
5)Freeze database cluster
6)Copy CLOG
7)Set control data (XID,OID,XLOG ...)
8)Create databases, users ...

*Simplified version without tablespaces
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How pg_upgrade.sh works (cont.)

9)Protect TOAST tables (need to have 
same relfilenode)

10)Create tables, views ...
11)Adjust relfilenode for TOAST tables,idx
12)Copying and renaming data files
13)Done
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How upgrade should work

pg_ctl -D /var/postgres upgrade
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How upgrade should work II.

check directory /var/postgres ... ok (version 822)

check subdirectories ... ok

creating template1 database in /tmp/pokus/base/1 ... ok

initializing pg_authid ... ok

initializing dependencies ... ok

creating system views ... ok

loading system objects' descriptions ... ok

creating conversions ... ok

creating dictionaries ... ok

setting privileges on built-in objects ... ok

creating information schema ... ok

vacuuming database template1 ... ok

upgrading pg_global database ... ok

upgrading template0 ... ok

upgrading postgres ... ok

upgrading super_db ... ok
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Control file

• Compatibility verification (BLCKSZ, 
MAXALIGN, FP format...)
• BLCKSZ, RELSEGSIZE, TOAST MAX 

CHUNK SIZE could be modified during 
upgrade 
• Translate XID, OID, LC_COLLATE, LSN...
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Catalogs

• Structure
> Use postgres.bki to initialize catalog 
> Keep old data files for data transfer

• Contents
> User metadata will be transferred and 

converted to the new structure
> Strict rules for systems OID modification
> Some kind of changes is not allowed (e.g. 

binary format change must invoke new data 
type – new OID)
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Configuration files

• postgresql.conf
> New GUC variable will contain default value
> Obsolete GUC variable will be ignored – 

warning in log file
> Out of range values will be set to default
> Problem is with different meaning of values

• pg_hba.conf, pg_ident.conf
> Depends on kind of change ...
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Storage upgrade
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Page Layout Structures

BLCKSZ

PageHeaderData

ItemIdData

HeapTupleHeaderData

IndexTupleData

TOAST_MAX_CHUNK_SIZE

*OpaqueData

*MaxItemSize

varatt*
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Storage dependency graph
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Storage upgrade methods

• On line 
> Read only mode
> Read Old, Write New
> On fly page layout conversion

• Off line
> Inside heap tuple reorganization
> Heap translation
> Retoasting
> Reindexing
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Storage upgrade methods

• Need to learn PostgreSQL to work with 
old data structures
• Add extra code which could slow down 

general performance
• Easy return back to prior version
• Problem with catalog

Read Only Mode
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Storage upgrade methods

• Based on Read Only Mode
• Modified data are written in new format

Read Old, Write New
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Storage upgrade methods

#define SizeOfPageHeaderData(page)  \
(PageGetPageLayoutVersion(page) == 4 ? \

(offsetof(PageHeaderData_04, pd_linp[0])) :\
(offsetof(PageHeaderData_03, pd_linp[0])))

typedef struct HeapTupleData
{

uint32      t_len;          /* length of *t_data */
ItemPointerData t_self;     /* SelfItemPointer */
Oid         t_tableOid;     /* table the tuple came from */
uint16 t_version; /* page layout version */
HeapTupleHeader t_data; /* -> tuple header and data */

} HeapTupleData;

Read Only Mode - example
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Storage upgrade methods

• Possible only when converted data fits on 
same page. 
• Not possible between layout version 3 

and 4 (8.2->8.3). 
> Pageheader has been extended to 24 bytes.
> Index tuples does not fit on a page, different 

toast chunk size and heap tuples does not fit 
on machines with MAXALIGN=8 (e.g. SPARC)

• WAL generates a lot of full page writes.

Online Page Layout Conversion
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Storage upgrade methods

• Convertor hook in ReadBuffer_common
{

smgrread(reln->rd_smgr, blockNum, (char *) bufBlock);
/* Page Layout Convertor hook. We assume 

           that page version is on same place. */
if( plc_hook &&  PageGetPageLayoutVersion(reln,bufBlock) 

!= PG_PAGE_LAYOUT_VERSION )
{

plc_hook((char *)bufBlock);
bufHdr->flags |= (BM_DIRTY | BM_JUST_DIRTIED);
log_newpage(&reln->rd_node, blockNum ,bufBlock);

}
}

Online Page Layout Conversion - example
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Storage upgrade methods

• Similar to page layout conversion, but 
tuple which does not fit on the page have 
to be moved to a new page
• Requires reindex (only if inter page 

transfer happened) or introduce inter 
page redirection pointer
• Requires WAL logging
• Does not need extra disk space

Inner heap tuples reorganization
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Storage upgrade methods

• Tuples are translated from old heap to 
the newly created
• Possible to change BLCKSZ, RELSEGSIZE
• Does not require WAL logging
• Needs space for a new table (old indexes 

could be dropped or continuously drop 
segments)
• If TOAST table is translated (has new 

relfilenode), TOAST pointers must be 
updated 

Heap translation
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Storage upgrade methods

• Needed when TOAST_MAX_CHUNK_SIZE 
has been changed
• More possible solutions:
> Add TOAST_MAX_CHUNK_SIZE to pg_class
> Adjust toast_fetch_datum() accept different 

size
> Combine retoasting with heap translation

• Take care about TOAST pointer
• Requires full index scan on original 

TOAST IDX related to the TOAST table

Retoasting
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Storage upgrade methods

• Reindexing is necessary every time when
> tid of any tuple has been changed
> index structure has been changed
> index tuples does not fit on a new page 

layout

• Reindex could be performed on the 
running system

Reindexing
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Write Ahead Log (WAL/XLOG)

• CHECKPOINT is last operation on 
shutdown. All changes are applied and  
WAL files can be dropped.
• Needs to keep XLOG pointer to protect 

correct recovery (LSN dependency on 
WAL) 
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Commit log (CLOG)

• Array of transactions status
• No changes for long time – stable
• Some upgrade methods could produce a 

frozen database, afterwards CLOG files 
could be removed
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Other
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Stored procedures

• Changes in PL languages
> All changes are usually backward compatible
> Possible to add language version into catalog 

and delivery more *.so
> Problem with procedures written in C
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Tsearch2 

• Any change in FTS configuration or 
dictionary implies regeneration of 
affected tsvectors fields. Unfortunately, 
there is not relation between tsvector and 
original source.
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Proposed upgrade devel policy

• Each submitted patch MUST handle 
upgrade 
• All affected structures should have 

version number
• Binaries should work with multiple 

versions of database clusters (e.g. 
pg_controldata)
• System OIDs in catalog shouldn't be 

reused
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