
© 2008 by Skype.

PgQ
Generic high-performance queue

for PostgreSQL

© 2008 by Skype.

Agenda

 Introduction to queuing
 Problems with standard SQL
 Solution by exporting MVCC info
 PgQ architecture and API
 Use-cases
 Future

© 2008 by Skype.

Queue properties

 Data is created during ordinary transactions
 But we want to process it later
 After it is processed, its useless

Producer:
change_password
-> password event

Consumer:
mailer

User events

© 2008 by Skype.

Queue goals

 High-throughput
 No locking during writing / reading
 Parallel writes
 Batched reads

 Low-latency
 Data available in reasonably short time

 Robust
 Returns all events
 Repeatable reads

© 2008 by Skype.

Implementing a queue
with standard SQL

© 2008 by Skype.

Standard SQL - row-by-row

 Reading process:
 Select first unprocessed row
 Update it as in-progress
 Later update it as done or delete.

 High-throughput – NO
 Low-latency – YES
 Robust - YES

© 2008 by Skype.

Standard SQL – SELECT with LIMIT

 Reading process:
 Select several unprocessed rows with LIMIT
 Later delete all of them.

 High-throughput – YES
 Low-latency – YES
 Robust - NO

© 2008 by Skype.

Standard SQL – rotated tables

 Reading process:
 Rename current event table
 Create new empty event table
 Read renamed table

 High-throughput – YES
 Low-latency – NO
 Robust - YES

© 2008 by Skype.

Standard SQL – group by nr / date

 Reading process:
 Request block of events for reading
 Read them
 Tag the block of events as done

 High-throughput – YES
 Low-latency – YES
 Robust - NO

© 2008 by Skype.

No good way to implement queue
with standard SQL

© 2008 by Skype.

Postgres-specific solution, ideas

 Vadim Mikheev (rserv)
 We can export internal Postgres visibility info (trancaction id /

snapshot).
 Jan Wieck (Slony-I)

 If we have 2 snapshots, we can query events that happened
between them.

 “Agreeable order” - order taken from sequence in AFTER
trigger

© 2008 by Skype.

Postgres-specific solution, PgQ improvements

 Optimized querying that tolerates long transactions
 Optimized rotation, the time when query is ran on both old

and new table is minimal (long tx problem)
 64-bit stable external transaction Ids
 Simple architecture – pull-only readers
 Queue component is generic

© 2008 by Skype.

Postgres-spacific solution, MVCC basics

 Transaction IDs (txid) are assigned sequentially
 Transactions can be open variable amount of time, their

operations should be invisible for that time
 Snapshot represents point in time – it divides txids into

visible ones and invisible ones

© 2008 by Skype.

Postgres-specific solution, details

 Event log table:
 (ev_txid, ev_data)

 Tick table where snapshots are stored
 (tick_id, tick_snapshot)

 Result:
 High-performance – YES
 Low-latency – YES
 Robust - YES

© 2008 by Skype.

Postgres-specific solution – Snapshot basics

 Xmin – lowest transaction ID in progress
 Xmax – first unassigned transaction ID
 Xip – list of transaction Ids in progress
 txid_visible_in_snapshot(txid, snap) =

 txid < snap.xmin OR
 (txid < snap.xmax AND
 txid NOT IN (snap.xip))

© 2008 by Skype.

Postgres-specific solution – Core API

 Current transaction details:
 txid_current(): int8
 txid_current_snapshot(): txid_snapshot

 Snapshot components:
 txid_snapshot_xmin(snap): int8
 txid_snapshot_xmax(snap): int8
 txid_snapshot_xip(snap): SETOF int8

 Visibility check:
 txid_visible_in_snapshot(txid, snap): bool

© 2008 by Skype.

Query between snapshots

© 2008 by Skype.

Query between snapshots – Simple version

 Snapshot 1 – xmin1, xmax2, xip1
 Snapshot 2 – xmin2, xmax2, xip2
 SELECT * FROM queue

 WHERE ev_txid BETWEEN xmin1 AND xmax2
 AND NOT is_visible(ev_txid, snap1)
 AND is_visible(ev_txid, snap2)

 Index scan between xmin1 and xmax2

© 2008 by Skype.

Query between snapshots – optimized version

 Query must be done in 2 parts – range scan and list of
explicit ids

 SELECT * FROM queue
 WHERE (ev_txid IN (xip1) OR
 (ev_txid BETWEEN xmax1 AND xmax2))
 AND NOT is_visible(ev_txid, snap1)
 AND is_visible(ev_txid, snap2)

© 2008 by Skype.

Query between snapshots – more optimizations

 More optimizations
 Pick txids that were actually committed
 Decrease explicit list by accumulating nearby ones into range

scan
 Final notes:

 The values must be substituted literally into final query,
Postgres is not able to plan parametrized query.

 PgQ itself uses UNION ALL instead OR. But OR seems to
work at least on 8,3.

© 2008 by Skype.

Query between snapshots – helper function

 All complexity can be put into helper function
 SELECT range_start, range_end, explicit_list
FROM txid_query_helper(snap1, snap2);

 This results in query:
 SELECT * FROM queue
 WHERE ev_txid IN (explicit_list) OR
 (ev_txid BETWEEN range_start AND range_end
 AND NOT is_visible(ev_txid, snap1)
 AND is_visible(ev_txid, snap2))

There is PgQ.

Take a deep breath.

© 2008 by Skype.

PgQ architecture

 Ticker (pgqadm.py -d config.ini ticker)
 Inserts ticks – per-queue snapshots
 Vacuum tables
 Rotates tables
 Re-inserts retry events

 Event Producers
 pgq.insert_event()
 pgq.sqltriga() / pgq.logutriga()

 Event Consumers
 Need to register
 Poll for batches

© 2008 by Skype.

PgQ event structure

 CREATE TABLE pgq.event (
 ev_id int8 NOT NULL,
 ev_txid int8 NOT NULL DEFAULT txid_current(),
 ev_time timestamptz NOT NULL DEFAULT now(),
 -- rest are user fields --
 ev_type text, -- what to expect from ev_data
 ev_data text, -- main data, urlenc, xml, json
 ev_extra1 text, -- metadata
 ev_extra2 text, -- metadata
 ev_extra3 text, -- metadata
 ev_extra4 text -- metadata
);
CREATE INDEX txid_idx ON pgq.event (ev_txid);

© 2008 by Skype.

PgQ ticker

 Reads event id sequence for each queue.
 If new events have appeared, then inserts tick if:

 Configurable amount of events have appeared
ticker_max_count (500)

 Configurable amount of time has passed from last tick
ticker_max_lag (3 sec)

 If no events in the queue, creates tick if some time has
passed.
 ticker_idle_period (60 sec)

 Configuring from command line:
 pgqadm.py ticker.ini config my_queue
ticker_max_count=100

© 2008 by Skype.

PgQ API: event insertion

 Single event insertion:
 pgq.insert_event(queue, ev_type, ev_data): int8

 Bulk insertion, in single transaction:
 pgq.current_event_table(queue): text

 Inserting with triggers:
 pgq.sqltriga(queue, ...) - partial SQL format
 pgq.logutriga(queue, ...) - urlencoded format

© 2008 by Skype.

PgQ API: insert complex event with pure SQL

 CREATE TABLE queue.some_event (col1, col2);
CREATE TRIGGER some_trg
 BEFORE INSERT ON queue.some_event
 FOR EACH ROW EXECUTE PROCEDURE
 pgq.logutriga('dstqueue', 'SKIP');

 Plain insert works:
 INSERT INTO queue.some_event(col1, col2)
VALUES ('value1', 'value2');

 Type safety, default values, sequences, constraints!
 Several tables can insert into same queue.

© 2008 by Skype.

PgQ API: reading events

 Registering
 pgq.register_consumer(queue, consumer)
 pgq.unregister_consumer(queue, consumer)

 Reading
 pgq.next_batch(queue, consumer): int8
 pgq.get_batch_events(batch_id): SETOF record
 pgq.finish_batch(batch_id)

© 2008 by Skype.

Remote event tracking

 Async operation allows coordinating work between several
database.

 Occasionally data itself allows tracking:
 eg. Delete order.

 If not then explicit tracking is needed.
 pgq_ext module.
 Tracking can happen in multiple databases.

© 2008 by Skype.

Tracking events

 Per-event overhead
 Need to avoid accumulating
 pgq_ext solution

 pgq_ext.is_event_done(consumer, batch_id, ev_id)
 pgq_ext.set_event_done(consumer, batch_id, ev_id)

 If batch changes, deletes old events
 Eg. email sender, plproxy.

© 2008 by Skype.

Tracking batches

 Minimal per-event overhead
 Requires that all batch is processed in one TX

 pgq_ext.is_batch_done(consumer, batch_id)
 pgq_ext.set_batch_done(consumer, batch_id)

 Eg. replication, most of the Skytools partitioning script.

© 2008 by Skype.

Use-case: row counter for count(*) speedup
 import pgq

class RowCounter(pgq.Consumer):
 def process_batch(self, db, batch_id, ev_list):
 tbl = self.cf.get('table_name'); delta = 0
 for ev in ev_list:
 if ev.type == 'I' and ev.extra1 == tbl: delta += 1
 elif ev.type == 'D' and ev.extra1 == tbl: delta -= 1
 ev.tag_done()
 q = 'select update_stats(%s, %s)'
 db.cursor().execute(q, [tbl, delta])
RowCounter('row_counter', 'db', sys.argv[1:]).start()

[row_counter]
db = ...
pgq_queue_name = ...
table_name = ...
job_name = ...
logfile = ...
pidfile = ...

© 2008 by Skype.

Use-case: copy queue to different database

import pgq
class QueueMover(pgq.RemoteConsumer):
 def process_remote_batch(self, db, batch_id, ev_list, dst_db):
 # prepare data
 rows = []
 for ev in ev_list:
 rows.append([ev.type, ev.data, ev.time])
 ev.tag_done()

 # insert data
 fields = ['ev_type', 'ev_data', 'ev_time']
 curs = dst_db.cursor()
 dst_queue = self.cf.get('dst_queue_name')
 pgq.bulk_insert_events(curs, rows, fields, dst_queue)

script = QueueMover('queue_mover', 'src_db', 'dst_db', sys.argv[1:])
script.start()

© 2008 by Skype.

Use-case: email sender

 Non-transactional, so need to track event-by-event
 Needs to commit at each event

© 2008 by Skype.

Use-case: replication (Londiste)

 Per-batch tracking on remote side
 COPY as a parallel consumer

 Register, then start COPY
 If COPY finishes, applies events from queue for that table
 Then gives it over to main consumer

 Example session:

$ ed replic.ini; ed ticker.ini
$ londiste.py replic.ini provider install
$ londiste.py replic.ini subscriber install
$ pgqadm.py -d ticker.ini ticker
$ londiste.py -d replic.ini replay
$ londiste.py replic.ini provider add table1 table2 ...
$ londiste.py replic.ini subscriber add table1 table2 ...

© 2008 by Skype.

Future: cascaded queues

 The goal is to have exact copy of queue in several nodes so
reader can freely switch between them.

 Exact means tick_id + events. For simplicity the txids and
snapshots are not carried over.

 To allow consumers to randomly switch between nodes, the
global horizon is kept. Each node has main worker that
sends its lowest tick_id to provider. Worker on master node
send global lowest tick_id to queue, where each worker can
see it.

 Such design allows workers to care only about 2 node.
 Fancy stuff: merging of plproxy partitions.

© 2008 by Skype.

Questions?

© 2008 by Skype.

PgQ queue info table

create table pgq.queue (
 queue_id serial,
 queue_name text not null,

 queue_ntables integer not null default 3,
 queue_cur_table integer not null default 0,
 queue_rotation_period interval not null default '2 hours',

 queue_ticker_max_count integer not null default 500,
 queue_ticker_max_lag interval not null default '3 seconds',
 queue_ticker_idle_period interval not null default '1 minute',

 queue_data_pfx text not null,
 queue_event_seq text not null,
 queue_tick_seq text not null,
);

