PgQ

Generic high-performance queue
for PostgreSQL

© 2008 by Skype.

* Introduction to queuing

* Problems with standard SQL

* Solution by exporting MVCC info
* PgQ architecture and API

* Use-cases

* Future

© 2008 by Skype.

Queue properties

* Data is created during ordinary transactions
* But we want to process it later
* After it is processed, its useless

Producer:
change password
-> password event
< > User events

© 2008 by Skype.

Consumer:
mailer

Queue goals

* High-throughput

* No locking during writing / reading

* Parallel writes

* Batched reads
* Low-latency

* Data available in reasonably short time
* Robust

* Returns all events

* Repeatable reads

© 2008 by Skype.

Implementing a queue
with standard SQL

© 2008 by Skype.

Standard SQL - row-by-row

* Reading process:
* Select first unprocessed row
* Update it as in-progress
* Later update it as done or delete.
* High-throughput — NO
* Low-latency — YES
* Robust - YES

© 2008 by Skype.

Standard SQL - SELECT with LIMIT

* Reading process:

* Select several unprocessed rows with LIMIT
* Later delete all of them.

* High-throughput — YES
* Low-latency — YES
* Robust - NO

© 2008 by Skype.

Standard SQL - rotated tables

* Reading process:
* Rename current event table
* Create new empty event table
* Read renamed table

* High-throughput — YES
* Low-latency — NO
* Robust - YES

© 2008 by Skype.

Standard SQL - group by nr / date

* Reading process:

* Request block of events for reading
* Read them
* Tag the block of events as done

* High-throughput — YES
* Low-latency — YES
* Robust - NO

© 2008 by Skype.

No good way to implement queue
with standard SQL

© 2008 by Skype.

Postgres-specific solution, ideas

* Vadim Mikheev (rserv)

* We can export internal Postgres visibility info (trancaction id /
shapshot).

* Jan Wieck (Slony-I)

* If we have 2 snapshots, we can query events that happened
between them.

* “Agreeable order” - order taken from sequence in AFTER
trigger

© 2008 by Skype.

Postgres-specific solution, PgQ improvements

* Optimized querying that tolerates long transactions

* Optimized rotation, the time when query is ran on both old
and new table is minimal (long tx problem)

* 64-bit stable external transaction Ids
* Simple architecture — pull-only readers
* Queue component is generic

© 2008 by Skype.

Postgres-spacific solution, MVCC basics

* Transaction IDs (txid) are assigned sequentially

* Transactions can be open variable amount of time, their
operations should be invisible for that time

* Snapshot represents point in time — it divides txids into
visible ones and invisible ones

© 2008 by Skype.

Postgres-specific solution, details

Event log table:
* (ev_txid, ev_data)
Tick table where snapshots are stored
* (tick_id, tick_snapshot)
Result:
* High-performance — YES
* Low-latency — YES
* Robust - YES

© 2008 by Skype.

Postgres-specific solution — Snapshot basics

————

Xxmin Xmax

¢ Xmin — lowest transaction ID in progress

¢ Xmax — first unassigned transaction 1D

* Xip — list of transaction Ids in progress

* txid visible in snapshot(txid, snap)
txid < snap.xmin OR

(txid < snap.xmax AND
txid NOT IN (snap.xip))

© 2008 by Skype.

Postgres-specific solution — Core API

* Current transaction details:

°* txid current(): int8

°* txid current snapshot(): txid snapshot
* Snapshot components:

° txid snapshot xmin(snap): int8

° txid snapshot xmax(snap): int8

° txid snapshot xip(snap): SETOF int8
* Visibility check:

°* txid visible in snapshot(txid, snap): bool

© 2008 by Skype.

Query between snapshots

© 2008 by Skype.

Query between snapshots — Simple version

xminl | Xxmaxl ‘

Xxmin2 xmax2
Snapshot 1 — xmin1, xmax2, xip1

Snapshot 2 — xmin2, xmax2, xip2

SELECT * FROM queue

WHERE ev_ txid BETWEEN xminl AND xmax2
AND NOT is visible(ev_txid, snapl)
AND is visible(ev _txid, snap2)

Index scan between xmin1 and xmax2

© 2008 by Skype.

Query between snapshots — optimized version

o | Lol
)(ITIII"I].I I ERRILL Xmax1l

Xxmin2 ! I H ”mm"-l Xmax2

* Query must be done in 2 parts — range scan and list of
explicit ids
e SELECT * FROM queue
WHERE (ev_txid IN (xipl) OR
(ev_txid BETWEEN xmaxl AND xmax2))
AND NOT is visible(ev_txid, snapl)
AND is visible(ev _txid, snap2)

© 2008 by Skype.

Query between snapshots — more optimizations

* More optimizations
* Pick txids that were actually committed

* Decrease explicit list by accumulating nearby ones into range
scan

* Final notes:

* The values must be substituted literally into final query,
Postgres is not able to plan parametrized query.

* PgQ itself uses UNION ALL instead OR. But OR seems to
work at least on 8,3.

© 2008 by Skype.

Query between snapshots — helper function

* All complexity can be put into helper function
* SELECT range start, range end, explicit list
FROM txid query helper (snapl, snap2);
* This results in query:
e SELECT * FROM queue
WHERE ev_ txid IN (explicit list) OR
(ev_txid BETWEEN range start AND range end
AND NOT is visible(ev_txid, snapl)
AND is visible (ev_txid, snap2))

© 2008 by Skype.

Take a deep breath.

There is PgQ.

PgQ architecture

Ticker (pggadm.py -d config.ini ticker)
* |Inserts ticks — per-queue snapshots
* Vacuum tables
* Rotates tables
* Re-inserts retry events

Event Producers
* pgq.insert_event()

* pgq.sqltriga() / pgq.logutriga()

Event Consumers
* Need to register
* Poll for batches

© 2008 by Skype.

PgQ event structure

e CREATE TABLE pgq.event (

ev_id int8 NOT NULL,

ev_txid int8 NOT NULL DEFAULT txid current(),
ev_time timestamptz NOT NULL DEFAULT now(),

-—- rest are user fields --

ev_type text, -—- what to expect from ev _data
ev_data text, -- main data, urlenc, xml, json
ev_extral text, -- metadata

ev_extra2 text, -- metadata

ev_extra3 text, -- metadata

ev_extrad4 text -- metadata

) ;

CREATE INDEX txid idx ON pgqg.event (ev_txid);

© 2008 by Skype.

PgQ ticker

* Reads event id sequence for each queue.
* If new events have appeared, then inserts tick if:

* Configurable amount of events have appeared
ticker max count (500)

* Configurable amount of time has passed from last tick
ticker max lag (3 sec)

If no events in the queue, creates tick if some time has
passed.

* ticker idle period (60 sec)

Configuring from command line:

° pggadm.py ticker.ini config my queue
ticker max count=100

© 2008 by Skype.

PgQ API: event insertion

* Single event insertion:

° pgq.insert event(queue, ev_type, ev_data): int8
* Bulk insertion, in single transaction:

° pgq.current event table(queue): text
* Inserting with triggers:

° pgq.sqgltriga(queue, ...) - partial SQL format

* pgq.logutriga(queue, ...) - urlencoded format

© 2008 by Skype.

PgQ API: insert complex event with pure SQL

e CREATE TABLE queue.some event (coll, col2);
CREATE TRIGGER some trg
BEFORE INSERT ON queue.some event
FOR EACH ROW EXECUTE PROCEDURE
pgq.logutriga ('dstqueue', 'SKIP');
* Plain insert works:
 INSERT INTO queue.some event(coll, col2)
VALUES ('valuel', 'value2');
* Type safety, default values, sequences, constraints!

* Several tables can insert into same queue.

© 2008 by Skype.

PgQ API: reading events
* Registering

° pgq.register consumer (queue, consumer)
° pgg.unregister consumer (queue, consumer)
* Reading
°* pgqg.next batch(queue, consumer): int8
°* pgg.get batch events(batch id): SETOF record
° pgq.finish batch(batch id)

© 2008 by Skype.

Remote event tracking

Async operation allows coordinating work between several
database.

Occasionally data itself allows tracking:
* eg. Delete order.
If not then explicit tracking is needed.
pPgq_ext module.
Tracking can happen in multiple databases.

© 2008 by Skype.

Tracking events

Per-event overhead
Need to avoid accumulating

pPgq_ext solution

° pgq_ext.is event done(consumer, batch id, ev_id)
°* pgq_ext.set event done(consumer, batch id, ev_id)
If batch changes, deletes old events

Eg. emall sender, plproxy.

© 2008 by Skype.

Tracking batches

* Minimal per-event overhead

* Requires that all batch is processed in one TX
° pgq _ext.is batch done(consumer, batch id)
° pgq_ext.set batch done(consumer, batch id)

* Eg. replication, most of the Skytools partitioning script.

© 2008 by Skype.

Use-case: row counter for count(*) speedup

import pgq
class RowCounter (pgq.Consumer) :
def process batch(self, db, batch id, ev_list):
tbl = self.cf.get('table name'); delta = 0
for ev in ev_list:
if ev.type == 'I' and ev.extral == tbl: delta +=
elif ev.type == 'D' and ev.extral == tbl: delta -=
ev.tag done()
q = 'select update stats(%s, %s)'
db.cursor () .execute(q, [tbl, delta])
RowCounter ('row _counter', 'db', sys.argv[l:]).start()

(e

[row counter]

db =

Pgg_queue name =
table name =

job name =
logfile =
pidfile =

© 2008 by Skype.

Use-case: copy queue to different database

import pgq
class QueueMover (pgq.RemoteConsumer) :
def process_remote batch(self, db, batch_id, ev_1list, dst _db):
prepare data
rows = []
for ev in ev_list:
rows.append([ev.type, ev.data, ev.time])
ev.tag done ()

insert data

fields = ['ev_type', 'ev_data', 'ev_time']

curs = dst_db.cursor()

dst _queue = self.cf.get('dst queue name')
pgq.bulk insert events(curs, rows, fields, dst queue)

script = QueueMover ('queue mover', 'src db', 'dst db', sys.argv[l:])
script.start()

© 2008 by Skype.

Use-case: email sender

* Non-transactional, so need to track event-by-event
* Needs to commit at each event

© 2008 by Skype.

Use-case: replication (Londiste)

* Per-batch tracking on remote side

* COPY as a parallel consumer
* Register, then start COPY
* If COPY finishes, applies events from queue for that table
* Then gives it over to main consumer

* Example session:

ed replic.ini; ed ticker.ini

londiste.py replic.ini provider install

londiste.py replic.ini subscriber install

pggadm.py -d ticker.ini ticker

londiste.py -d replic.ini replay

londiste.py replic.ini provider add tablel table2 ...
londiste.py replic.ini subscriber add tablel table2 ...

v v n

© 2008 by Skype.

Future: cascaded queues

The goal is to have exact copy of queue in several nodes so
reader can freely switch between them.

Exact means tick_id + events. For simplicity the txids and
snapshots are not carried over.

To allow consumers to randomly switch between nodes, the
global horizon is kept. Each node has main worker that
sends its lowest tick id to provider. Worker on master node
send global lowest tick id to queue, where each worker can
see it.

Such design allows workers to care only about 2 node.
Fancy stuff: merging of plproxy partitions.

© 2008 by Skype.

.i.
\

Questions?

© 2008 by Skype.

PgQ queue info table

create table pgg.queue (
queue 1id
queue name

queue ntables
queue cur table
queue rotation period

queue ticker max count
queue ticker max lag
queue ticker idle period

queue data pfx

queue event seq
queue tick seq

© 2008 by Skype.

serial,
text

integer
integer
interval

integer
interval
interval

text
text
text

not

not
not
not

not
not
not

not
not
not

null,

null
null
null

null
null
null

null,
null,
null,

default
default
default

default
default
default

3,
0,
'2 hours',

500,
'3 seconds',
'l minute',

