
© 2008 by Skype.

PgQ
Generic high-performance queue

for PostgreSQL

© 2008 by Skype.

Agenda

 Introduction to queuing
 Problems with standard SQL
 Solution by exporting MVCC info
 PgQ architecture and API
 Use-cases
 Future

© 2008 by Skype.

Queue properties

 Data is created during ordinary transactions
 But we want to process it later
 After it is processed, its useless

Producer:
change_password
-> password event

Consumer:
mailer

User events

© 2008 by Skype.

Queue goals

 High-throughput
 No locking during writing / reading
 Parallel writes
 Batched reads

 Low-latency
 Data available in reasonably short time

 Robust
 Returns all events
 Repeatable reads

© 2008 by Skype.

Implementing a queue
with standard SQL

© 2008 by Skype.

Standard SQL - row-by-row

 Reading process:
 Select first unprocessed row
 Update it as in-progress
 Later update it as done or delete.

 High-throughput – NO
 Low-latency – YES
 Robust - YES

© 2008 by Skype.

Standard SQL – SELECT with LIMIT

 Reading process:
 Select several unprocessed rows with LIMIT
 Later delete all of them.

 High-throughput – YES
 Low-latency – YES
 Robust - NO

© 2008 by Skype.

Standard SQL – rotated tables

 Reading process:
 Rename current event table
 Create new empty event table
 Read renamed table

 High-throughput – YES
 Low-latency – NO
 Robust - YES

© 2008 by Skype.

Standard SQL – group by nr / date

 Reading process:
 Request block of events for reading
 Read them
 Tag the block of events as done

 High-throughput – YES
 Low-latency – YES
 Robust - NO

© 2008 by Skype.

No good way to implement queue
with standard SQL

© 2008 by Skype.

Postgres-specific solution, ideas

 Vadim Mikheev (rserv)
 We can export internal Postgres visibility info (trancaction id /

snapshot).
 Jan Wieck (Slony-I)

 If we have 2 snapshots, we can query events that happened
between them.

 “Agreeable order” - order taken from sequence in AFTER
trigger

© 2008 by Skype.

Postgres-specific solution, PgQ improvements

 Optimized querying that tolerates long transactions
 Optimized rotation, the time when query is ran on both old

and new table is minimal (long tx problem)
 64-bit stable external transaction Ids
 Simple architecture – pull-only readers
 Queue component is generic

© 2008 by Skype.

Postgres-spacific solution, MVCC basics

 Transaction IDs (txid) are assigned sequentially
 Transactions can be open variable amount of time, their

operations should be invisible for that time
 Snapshot represents point in time – it divides txids into

visible ones and invisible ones

© 2008 by Skype.

Postgres-specific solution, details

 Event log table:
 (ev_txid, ev_data)

 Tick table where snapshots are stored
 (tick_id, tick_snapshot)

 Result:
 High-performance – YES
 Low-latency – YES
 Robust - YES

© 2008 by Skype.

Postgres-specific solution – Snapshot basics

 Xmin – lowest transaction ID in progress
 Xmax – first unassigned transaction ID
 Xip – list of transaction Ids in progress
 txid_visible_in_snapshot(txid, snap) =

 txid < snap.xmin OR
 (txid < snap.xmax AND
 txid NOT IN (snap.xip))

© 2008 by Skype.

Postgres-specific solution – Core API

 Current transaction details:
 txid_current(): int8
 txid_current_snapshot(): txid_snapshot

 Snapshot components:
 txid_snapshot_xmin(snap): int8
 txid_snapshot_xmax(snap): int8
 txid_snapshot_xip(snap): SETOF int8

 Visibility check:
 txid_visible_in_snapshot(txid, snap): bool

© 2008 by Skype.

Query between snapshots

© 2008 by Skype.

Query between snapshots – Simple version

 Snapshot 1 – xmin1, xmax2, xip1
 Snapshot 2 – xmin2, xmax2, xip2
 SELECT * FROM queue

 WHERE ev_txid BETWEEN xmin1 AND xmax2
 AND NOT is_visible(ev_txid, snap1)
 AND is_visible(ev_txid, snap2)

 Index scan between xmin1 and xmax2

© 2008 by Skype.

Query between snapshots – optimized version

 Query must be done in 2 parts – range scan and list of
explicit ids

 SELECT * FROM queue
 WHERE (ev_txid IN (xip1) OR
 (ev_txid BETWEEN xmax1 AND xmax2))
 AND NOT is_visible(ev_txid, snap1)
 AND is_visible(ev_txid, snap2)

© 2008 by Skype.

Query between snapshots – more optimizations

 More optimizations
 Pick txids that were actually committed
 Decrease explicit list by accumulating nearby ones into range

scan
 Final notes:

 The values must be substituted literally into final query,
Postgres is not able to plan parametrized query.

 PgQ itself uses UNION ALL instead OR. But OR seems to
work at least on 8,3.

© 2008 by Skype.

Query between snapshots – helper function

 All complexity can be put into helper function
 SELECT range_start, range_end, explicit_list
FROM txid_query_helper(snap1, snap2);

 This results in query:
 SELECT * FROM queue
 WHERE ev_txid IN (explicit_list) OR
 (ev_txid BETWEEN range_start AND range_end
 AND NOT is_visible(ev_txid, snap1)
 AND is_visible(ev_txid, snap2))

There is PgQ.

Take a deep breath.

© 2008 by Skype.

PgQ architecture

 Ticker (pgqadm.py -d config.ini ticker)
 Inserts ticks – per-queue snapshots
 Vacuum tables
 Rotates tables
 Re-inserts retry events

 Event Producers
 pgq.insert_event()
 pgq.sqltriga() / pgq.logutriga()

 Event Consumers
 Need to register
 Poll for batches

© 2008 by Skype.

PgQ event structure

 CREATE TABLE pgq.event (
 ev_id int8 NOT NULL,
 ev_txid int8 NOT NULL DEFAULT txid_current(),
 ev_time timestamptz NOT NULL DEFAULT now(),
 -- rest are user fields --
 ev_type text, -- what to expect from ev_data
 ev_data text, -- main data, urlenc, xml, json
 ev_extra1 text, -- metadata
 ev_extra2 text, -- metadata
 ev_extra3 text, -- metadata
 ev_extra4 text -- metadata
);
CREATE INDEX txid_idx ON pgq.event (ev_txid);

© 2008 by Skype.

PgQ ticker

 Reads event id sequence for each queue.
 If new events have appeared, then inserts tick if:

 Configurable amount of events have appeared
ticker_max_count (500)

 Configurable amount of time has passed from last tick
ticker_max_lag (3 sec)

 If no events in the queue, creates tick if some time has
passed.
 ticker_idle_period (60 sec)

 Configuring from command line:
 pgqadm.py ticker.ini config my_queue
ticker_max_count=100

© 2008 by Skype.

PgQ API: event insertion

 Single event insertion:
 pgq.insert_event(queue, ev_type, ev_data): int8

 Bulk insertion, in single transaction:
 pgq.current_event_table(queue): text

 Inserting with triggers:
 pgq.sqltriga(queue, ...) - partial SQL format
 pgq.logutriga(queue, ...) - urlencoded format

© 2008 by Skype.

PgQ API: insert complex event with pure SQL

 CREATE TABLE queue.some_event (col1, col2);
CREATE TRIGGER some_trg
 BEFORE INSERT ON queue.some_event
 FOR EACH ROW EXECUTE PROCEDURE
 pgq.logutriga('dstqueue', 'SKIP');

 Plain insert works:
 INSERT INTO queue.some_event(col1, col2)
VALUES ('value1', 'value2');

 Type safety, default values, sequences, constraints!
 Several tables can insert into same queue.

© 2008 by Skype.

PgQ API: reading events

 Registering
 pgq.register_consumer(queue, consumer)
 pgq.unregister_consumer(queue, consumer)

 Reading
 pgq.next_batch(queue, consumer): int8
 pgq.get_batch_events(batch_id): SETOF record
 pgq.finish_batch(batch_id)

© 2008 by Skype.

Remote event tracking

 Async operation allows coordinating work between several
database.

 Occasionally data itself allows tracking:
 eg. Delete order.

 If not then explicit tracking is needed.
 pgq_ext module.
 Tracking can happen in multiple databases.

© 2008 by Skype.

Tracking events

 Per-event overhead
 Need to avoid accumulating
 pgq_ext solution

 pgq_ext.is_event_done(consumer, batch_id, ev_id)
 pgq_ext.set_event_done(consumer, batch_id, ev_id)

 If batch changes, deletes old events
 Eg. email sender, plproxy.

© 2008 by Skype.

Tracking batches

 Minimal per-event overhead
 Requires that all batch is processed in one TX

 pgq_ext.is_batch_done(consumer, batch_id)
 pgq_ext.set_batch_done(consumer, batch_id)

 Eg. replication, most of the Skytools partitioning script.

© 2008 by Skype.

Use-case: row counter for count(*) speedup
 import pgq

class RowCounter(pgq.Consumer):
 def process_batch(self, db, batch_id, ev_list):
 tbl = self.cf.get('table_name'); delta = 0
 for ev in ev_list:
 if ev.type == 'I' and ev.extra1 == tbl: delta += 1
 elif ev.type == 'D' and ev.extra1 == tbl: delta -= 1
 ev.tag_done()
 q = 'select update_stats(%s, %s)'
 db.cursor().execute(q, [tbl, delta])
RowCounter('row_counter', 'db', sys.argv[1:]).start()

[row_counter]
db = ...
pgq_queue_name = ...
table_name = ...
job_name = ...
logfile = ...
pidfile = ...

© 2008 by Skype.

Use-case: copy queue to different database

import pgq
class QueueMover(pgq.RemoteConsumer):
 def process_remote_batch(self, db, batch_id, ev_list, dst_db):
 # prepare data
 rows = []
 for ev in ev_list:
 rows.append([ev.type, ev.data, ev.time])
 ev.tag_done()

 # insert data
 fields = ['ev_type', 'ev_data', 'ev_time']
 curs = dst_db.cursor()
 dst_queue = self.cf.get('dst_queue_name')
 pgq.bulk_insert_events(curs, rows, fields, dst_queue)

script = QueueMover('queue_mover', 'src_db', 'dst_db', sys.argv[1:])
script.start()

© 2008 by Skype.

Use-case: email sender

 Non-transactional, so need to track event-by-event
 Needs to commit at each event

© 2008 by Skype.

Use-case: replication (Londiste)

 Per-batch tracking on remote side
 COPY as a parallel consumer

 Register, then start COPY
 If COPY finishes, applies events from queue for that table
 Then gives it over to main consumer

 Example session:

$ ed replic.ini; ed ticker.ini
$ londiste.py replic.ini provider install
$ londiste.py replic.ini subscriber install
$ pgqadm.py -d ticker.ini ticker
$ londiste.py -d replic.ini replay
$ londiste.py replic.ini provider add table1 table2 ...
$ londiste.py replic.ini subscriber add table1 table2 ...

© 2008 by Skype.

Future: cascaded queues

 The goal is to have exact copy of queue in several nodes so
reader can freely switch between them.

 Exact means tick_id + events. For simplicity the txids and
snapshots are not carried over.

 To allow consumers to randomly switch between nodes, the
global horizon is kept. Each node has main worker that
sends its lowest tick_id to provider. Worker on master node
send global lowest tick_id to queue, where each worker can
see it.

 Such design allows workers to care only about 2 node.
 Fancy stuff: merging of plproxy partitions.

© 2008 by Skype.

Questions?

© 2008 by Skype.

PgQ queue info table

create table pgq.queue (
 queue_id serial,
 queue_name text not null,

 queue_ntables integer not null default 3,
 queue_cur_table integer not null default 0,
 queue_rotation_period interval not null default '2 hours',

 queue_ticker_max_count integer not null default 500,
 queue_ticker_max_lag interval not null default '3 seconds',
 queue_ticker_idle_period interval not null default '1 minute',

 queue_data_pfx text not null,
 queue_event_seq text not null,
 queue_tick_seq text not null,
);

