

PGCon May 2008 Alaska Software Inc.

Overview

• Xbase++ the language
• Meeting points with PostgreSQL
• Pass-Through-SQL (P-SQL)
• PostgreSQL does ISAM and more!
• Xbase++ as a Server-Side-Language
• Into the future...
• Summary

PGCon May 2008 Alaska Software Inc.

Xbase++ the platform
• 4GL language, 100% Clipper compatible
• With asynchronous garbage collection, automatic multi

threading – no deadlock no need to sync. resource access
• OOP engine with multiple inheritance, dynamic class/object

creation and full object persistence
• Lamba expressions aka. Lisp Codeblocks over the wire
• Full dynamic loadable features and copy deployment
• The language and runtime itself introduce no-limits!
• Very powerfull preprocessor to add DSL constructs!
• Supports development of Console/Textmode, Graphical User-

Interface, Service, CGI, Web-Application-Server and Compiled-
Web-Page application types

• Has its roots on the OS/2 platform
• Currently focuses onto the Windows 32Bit and 64 Bit

Operating-Systems
• Hybrid Compiler, generates native code and VM code.

PGCon May 2008 Alaska Software Inc.

Data-Access in Xbase++ & xBase
• Rule-1: There is no impedance mismatch

– Any table datatype is a valid language datatype this includes
operators and expressive behaviour and NIL-State / NULL-behaviour

– Only tables introduce fixed-typing, the language itself must be
dynamic typed to adapt automatically to schema changes

• Rule-2: The language is the database and vice versa
– Any expression of the development language is a valid expression

on behalf of the database/table (index-key-expr., functions,
methods)

• Rule-3: Isolation semantics of the database and language
are the same
– Different application access a remote data source and different

threads accessing the same field/column are underlying the same
isolation principles.

xBase is ISAM, data-access is done based on the navigational
pradigma! How does xBase therefore fit into the world of SQL?

PGCon May 2008 Alaska Software Inc.

Zooming into a SQL Server

SELECT * FROM CUSTOMER WHERE CITY=‚Berlin‘

aSelect := {ALL,{CUSTOMER},{CITY=‚Berlin‘}}

USE CUSTOMER
GO TOP
DO WHILE !EOF()

IF(FIELD->CITY==„Berlin“)
ADD RECORD TO RESULT
ENDIF
SKIP 1

ENDDO
USE CUSTOMER INDEX CITIES
SEEK „Berlin“
DO WHILE City==„Berlin“

ADD RECORD TO RESULT
SKIP 1

ENDDO

PGCon May 2008 Alaska Software Inc.

Comparing DML!

SELECT * FROM CUSTOMER WHERE CITY=‚Berlin‘

USE CUSTOMER
GO TOP
DO WHILE !EOF()

IF(FIELD->CITY==„Berlin“)
ADD RECORD TO RESULT
ENDIF
SKIP 1

ENDDO

USE CUSTOMER INDEX CITIES
SEEK „Berlin“
DO WHILE City==„Berlin“

ADD RECORD TO RESULT
SKIP 1

ENDDO

In SQL you express what you want! The how is determined
dynamically depending in your concrete data-model and its state.

With xBase commands you express how you get it. The
what is „hidden“ in your logic and coding-style. Your code depends on all
details of your data model.

PGCon May 2008 Alaska Software Inc.

Comparing apples with
• SQL

– limited to data access and data definition (DDL, DML)
– using SQL means dealing with the impedance mismatch between

SQL as the server language and XYZ as the client language
– due to its client/server nature and the SQL abstraction it scales

relatively well

• Xbase++
– is a multi-purpose language centered around database-application

development. It goes from data-access to the user-interface,
formatting and validation.

– due to its ISAM approach it can reach very high transaction rates
(>20.000 „TPS“). If queries are hard-coded, local queries can be
blasting fast.

– suffers scaleability, reliability and abstraction due to its ISAM
nature and file-access-pattern.

PGCon May 2008 Alaska Software Inc.

Why PostgreSQL
• Philosopical:

– We don‘t like compromises and we also use the term propaganda for sales-
related activites

– We are a technical driven company and value our customers needs always first.
But we allow us to educate our customers and do not support all the hype‘s out
there!

• Technical wise:
– We like the early idea of Active-Databases and the rule system of PostgreSQL
– Ability to add user-defined-types and to add custom languages for stored

procedures
– Good SQL92/99 compliance, specifically with 8.3
– With 8.3 the inclusion of FTS with GIST/GIN indexes is a very good migration

argument

• In addition:
– With respect to multi-core and scaleability: multiple processes instead of threads

is a plus!
– Many books, even for beginners are out there

Bottom-Line: We have chosen PostgreSQL for its technical features .

PGCon May 2008 Alaska Software Inc.

Meeting points with PostgreSQL
• Pass-Through-SQL (PG-PAS)

– SELECT, INSERT, UPDATE,DELETE... as first class language
element

– PostgreSQL specific Datatypes are supported

• Navigational-Data-Access (PG-NAV)
– Navigational data-access
– Index, Filter, Scope support
– 100% compatible behaviour as DBF/FPT/NTX/CDX

DatabaseEngines

• Stored-Procedures in Xbase++(PG-XSP)
– 100% Xbase++ language support at the backend
– Code migration from client to server

PGCon May 2008 Alaska Software Inc.

Pass-Through SQL

• SQL Statements supported:
– SELECT, INSERT, UPDATE and DELETE

• Specific features are:
– Automated syntax adaption
– LOCAL and STATIC variables can be used in SQL statements

• In fact SQL Pass-Through-Statements are first class
language statements, lets see...

Coding
Time

Pass-
Through

SQL

PGCon May 2008 Alaska Software Inc.

Pass-Through SQL (sample-1)
Pass-

Through
SQL

Connect to
PostgreSQL server

Perform SQL SELECT

Browse result in
console

Edit dedicated
record

PGCon May 2008 Alaska Software Inc.

Pass-Through SQL (sample-2)
Pass-

Through
SQL

Transform a search
term to conform
with FTS syntax.

Just use the local
variable with the
search term in your
PostgreSQL select
command. The IN
operator is used to
match FTS

Client side Universal
SQL is used to transform
the PG result-set into
HTML code according to
the client locale settings

PGCon May 2008 Alaska Software Inc.

How does Pass-Through SQL work?

Resultset is available as a true workarea with all features such as navigation,
filters, scopes, field-variable access

Expression Identifiers, Constants and Operators get rewritten by the
DatabaseEngine to conform with the PostgreSQL syntax.

Expressions are codeblocks, the are now executed by the SafeExecutionEngine.
(This step removes all sideeffects from a expression, in other words it detaches the expression from the process)

The method chain gets executed and uses callbacks of the DatabaseEngine to
rewrite the SQL syntax depending on the PostgreSQL specific needs

SQL Language statement gets broken down into a sequence of methods
(grammar is transparent as the PreProcessor does this)

Pass-
Through

SQL

PGCon May 2008 Alaska Software Inc.

Data-Type-Mappings Xbase++ & PostgreSQL
• Smallint, int, bigint become Xbase++ Numeric-Integer
• Decimal and Numeric become Xbase++ Numeric-Decimal (arbitary numeric runtime

datatype)
• Real and double become Xbase++ Numeric-Float
• Char, VarChar, Text are mapped to Xbase++ Character. Padding and Truncation as SQL

defines in done silently by the runtime.
• Bytea is mapped to character w/o locale – aka. Binary type.
• Arrays are supported by Xbase++ arrays, however the type constraints introduces a

impedance mismatch
• Composite types are mapped to Object of the a class which matches by

classname==composite-typename, if the class is not found a hash-array is used.
• Geometric types are mapped to dedicated classes supported by the 2D primitives of

Xbase++ GraphicsEngine.
• Notes:

– NULL becomes NIL, in addition runtime can mask NIL-Value to empty-value to avoid three-
valued logic if required.

– The Xbase++ Numeric type is a morhping type which automatically morphes between int-
>bigint, int->float if required.

– The Xbase++ character-type is locale dependend. The runtime automatically performs
transformantions and collation/locale specific comparison/ordering. However we see here a
clear deficit of the PostgreSQL by not supporting NCHAR types.

PGCon May 2008 Alaska Software Inc.

Navigational Data-Access (PG-NAV)
• A Workarea reflects a result-set
• REPLACE operations lead to UPDATE statement
• APPEND operation leads to deferred INSERT operation with the next

REPLACE
• DELETED stated is managed with a hidden-field __DELETED
• Record-Id is emulated with a hidden-field __RECORDID
• Record-Locking is simply ignored as of yet. We tried advisory-locks but this

may create interoperability problems. Community-Preview will show how
to deal with that. Eventually semantics of existing Row-Level-Locks will do
the job.

• Lost-Update-Detection is done implicit with a hidden-field
__UPDATECOUNT

• Table-Locks are stright forwarded EXCLUSIVE locks.
• Index-Expressions become hidden fields which get updated automatically.
• Seek operations are transformed into stored-procedure bec. of seek-strict,

seek-soft, seek-first, seek-last semantics.
• Scopes are transformed into a WHERE clause.
• Filters are handled dynamically on client or server depending on filter-

expression complexitiy.

Navigational
Data

Access

PGCon May 2008 Alaska Software Inc.

xBase/ISAM specific issues
• Delete/Recall/Pack/Zap

– In xBase terms a record is marked for deletion
– It can be recalled until a pack happend
– A pack removes all marked for deletion records from a table
– A Zap removes all record from a table

• Index have different semantics
– In xBase terms indexes are used to enforce a specific logical order
– Indexes are often used to build „calculated-keys“/“surrogate-keys“

used inherintly in the data-model.
– Indexes are also used to perform match-code generation based on

fields.

Navigational
Data

Access

PGCon May 2008 Alaska Software Inc.

Application Evolution

Pushbutton have
been added

Static controls to
view state added

Listbox with owner-
drawing added

Navigational
Data

Access

PGCon May 2008 Alaska Software Inc.

Application Evolution

Original text-
console screen ha
sbeen mode to
become a window
in a MDI
application

Other text screens
have become
other modal
dialogs

New information
has been added
via owned
windows

Navigational
Data

Access

PGCon May 2008 Alaska Software Inc.

Application Evolution

New GUI dialogs
have been added

Application is still based on DBF/NTX, DBF/CDX tables
and indexes pure ISAM with WebServices and
Message-Queueing as the middleware.

Navigational
Data

Access

PGCon May 2008 Alaska Software Inc.

Application metrics

• Single Executable with one DLL
• ~20.000 lines of code in 63 source-files
• With hundreds of Seeks, Skips, Filters, Scopes
• ~ 12 tables plus 8 secondary lookup tables such

as countries
• ~ 40 indexes, ~ 10 are complex expressions
• User-Defined-Functions in Index-Expressions and

Filters
• Lexical-Rules to match Maier and Mayer

Navigational
Data

Access

PGCon May 2008 Alaska Software Inc.

Migration to PostgreSQL

• The only code changes needed are at a single place:
– establish the connection to the PostgreSQL server
– ensure the postgres-database engine becomes the default one.
– Table and index migration is done with the dbf2sql utility/wizard.

Coding
Time

Navigational
Data

Access

PGCon May 2008 Alaska Software Inc.

Performance issues
• Navigational data-access means

– moving relative-forward or relative-backward
– Jumping between absolute positions
– Working with real-time-data

• To implement navigational access the PostgreSQL
DatabaseEngine performs result-set partitioning and result-
set caching

• Realtime-Data-Behaviour is achieved by making use of the
notify-mechanism and by data-access-pattern related
heuristics.

• The current PG-NAV Engine for Xbase++ outperforms file-
based data-access in 5+ user scenario over the network.

Navigational
Data

Access

PGCon May 2008 Alaska Software Inc.

Benefits of PG-NAV
• Immediate

– Higher reliability of your data
– Better scaleability
– Lesser network saturation
– Remote-Applicatons due to TCP/IP layer between Client

and PostgreSQL server

• Mediate
– Higher security – hopefully -☺
– Full text search capabilities
– Geo data support
– Other platform choices for the DBMS than WINTEL
– Central place for backups

Navigational
Data

Access

PGCon May 2008 Alaska Software Inc.

Stored-Procedures
• Defintion in the context of this lecture: Code executed on the

database-server. Implementation flavours are Stored Functions, Stored
Procedures, and Triggers but also Datatypes and Operators.

• The Pros and Cons:

PROSThe pros and cons are basically balanced. There is no
clear winner – but the cons are centered around ...!?

Xbase++ on
the server

PGCon May 2008 Alaska Software Inc.

Stored-Procedures Cons revised
• All the cons. are related to the language/toolset around

stored-procedure development
• The vendor-lock in argument was never true, as even with

choosing specific datatypes or NULL behaviour led to a
vendor lock-in the past.

• use Xbase++ as the development language for
client and server development

• Write and debug your business logic on the client
and let the runtime move them to the SQL server

• Let the Pass-Through-SQL rewrite your SQL code
to conform with the syntax of the SQL server

Why not!

Xbase++ on
the server

PGCon May 2008 Alaska Software Inc.

Xbase++ a three-tier language

• Commands
• Functions
• Classes / Objects / Methods and Members

Object and Methods

Exception():RaiseCleartext(„your-exception-name“)

COMMAND

RAISE your-exception-name

#command RAISE <foo> => Exception():RaiseCleartext(<„foo“>)

Xbase++ on
the server

PGCon May 2008 Alaska Software Inc.

Xbase++ Stored-Procedures (XSP)
• The entire Xbase++ language commands with pre-processor,

functions/procedures, classes and objects is transparent available on
the PostgreSQL server

• The PostgreSQL Pass-through SQL engine automatically uses the SPI
interface instead of LibPQ. Behaviour against the user-level stays
unchanged. It is therefore transparent to the business logic if the
code is executed on the client or on the server.

• Server-Side-Functions can be created explicit or implicit by using the
[server] annotation in your source code. The later way allows you to
debug or unit-test your application without even thinking about that
this portions of your code are executed on behalf of the server.

• Code compilation, binary-creation and caching is done automatically.
• The Xbase++ profiler can be used to profile execution which allows

easy and quick performance bottleneck detection.

Xbase++ on
the server

PGCon May 2008 Alaska Software Inc.

XSP (sample1) Xbase++ on
the server

Coding
Time

PGCon May 2008 Alaska Software Inc.

„Arctica“ technologies

Xbase++
2.0

Pass-Through
SQL

Universal
SQL

„PostgreSQL“
Server

• Any Workarea
• DBF/NTX/CDX/DEL/SDF/...
• ADS-DatabaseEngine
• ODBC Database-Sources

• Objects
• Arrays
• PostgreSQL

Execute SQL statements against:

• ADS-DatabaseEngine
• ODBC Database-Sources
• PostgreSQL

Execute SQL statements against:

• As it understands all native xBase/ISAM
functions commands

• Supports all native Xbase++ datatyes
including objects and array

• Supports Xbase++ as the language for
stored procedures

Plays a special role:

PGCon May 2008 Alaska Software Inc.

Summary
• PostgreSQL is a unique DBMS, thanks to the way it

– supports alternate languages on the server side
– Enables customizing in term of datatypes and operators
– Enhances the scope of user-defined-function in terms of index

management
– isolates connection contexts with the process model

• Alaska Software as a company
– We have around 25.000 customers for our development toolset

with more than a million installation sites of end-user applications
– With the release of our PostgreSQL related technologies we want

to establish PostgreSQL as the preferred SQL Server solution at our
customers.

– We currently assume that approx. 1.000 of our customers will
move to the PostgreSQL dbms with the help of our technologies.
Leading to a 6 digit number of Server installation sites for mission
critical LOB applications.

PGCon May 2008 Alaska Software Inc.

Final Note!
• We are currently in a early stage of getting in touch

with the PostgreSQL community
• We are monitoring the community, we donate but

don‘t contribute
• As time will come, Alaska Software may actively

contribute to the progress of the PostgreSQL dbms.
• Alaska Software has no plans to sell the server, we

make money with the Xbase++ platform, services
and technologies. We want to add value!

Thank you all for such an open and customizable
SQL DBMS as PostgreSQL is.

PGCon May 2008 Alaska Software Inc.

	Xbase++ meets PostgreSQL
	Overview
	Xbase++ the platform
	Data-Access in Xbase++ & xBase
	Zooming into a SQL Server
	Comparing DML!
	Comparing apples with
	Why PostgreSQL
	Meeting points with PostgreSQL
	Pass-Through SQL
	Pass-Through SQL (sample-1)
	Pass-Through SQL (sample-2)
	How does Pass-Through SQL work?
	Data-Type-Mappings Xbase++ & PostgreSQL
	Navigational Data-Access (PG-NAV)
	xBase/ISAM specific issues
	Application Evolution
	�Application Evolution�
	Slide Number 19
	Application metrics
	Migration to PostgreSQL
	Performance issues
	Benefits of PG-NAV
	Stored-Procedures
	Stored-Procedures Cons revised
	Xbase++ a three-tier language
	Xbase++ Stored-Procedures (XSP)
	XSP (sample1)
	„Arctica“ technologies
	Summary
	Final Note!
	Slide Number 32

