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Current Market trends



Current Market Trends in Systems
• Quad-core sockets are current market standards
> Also 8-core sockets available now and could become a 

standard in next  couple of year
• Most common rack servers now have two sockets
> 8-core (or more ) systems are the norm with trend going 

to 12-16 core systems soon
• Most Servers have internal drives > 146 GB
> Denser in capacity, smaller in size but essentially same 

or lower speed 
> More denser in case of SATA-II drives



Current Market Trends in Software
• Software (including Operating Systems) have yet to 

fully catch up with multi-core systems
> “tar” still single process utility

• Horizontal Scaling helps a lot but not a good clean 
solution for multi-core systems

• Virtualization is the new buzzword for Consolidations
> Hides the fact that the software is not able to fully 

capitalize the extra cores :-(
• Research being done on new paradigms 
> Complexity of parallelized software is huge



Current Market Trends in Data
• 12 years ago, a 20GB data warehouse was 

considered a big database
• Now everybody talks about 200GB-5TB databases
• Some 2005 Survey numbers:
> Top OLTP DB sizes =  5,973 GB to   23,101 GB
> Top DW DB Sizes =   17,685 GB to 100,386 GB
> Source http://www.wintercorp.com/VLDB/2005_TopTen_Survey/TopTenWinners_2005.asp

• Some 2007 Survey numbers:
> Top  DB sizes =  20+ TB to 220 TB ( 6+ PB on tape)
> Source http://www.businessintelligencelowdown.com/2007/02/top_10_largest.html 

http://www.wintercorp.com/VLDB/2005_TopTen_Survey/TopTenWinners_2005.asp
http://www.businessintelligencelowdown.com/2007/02/top_10_largest.html


Impact on workloads 
with  multi-cores 
system running 
PostgreSQL



PGBench (Modified )
• Custom insert.sql
> BEGIN;
> INSERT INTO history (tid, bid, aid, delta, mtime) 

VALUES (:tid, :bid, :aid, :delta, 
CURRENT_TIMESTAMP);

> END; 
• pgbench -f insert.sql -s 1000 -c 1 -t 10000 pgbench 



PGBench ( inserts only)
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• IOPS on logs during regular pgbench run is around 800 w/s which means transaction optimizations happening somewhere

• With commit_delay (sibling =5) at 16 clients IOPS on logs is 102 w/sec which means quite a bit of capacity on logs yet 

• With synchronous_commit=off wal_writer_delay=100ms, the iops on the log devices is 10 w/sec 

• Same performance with wal_writer_delay=10ms (50w/sec on logs) and wal_writer_delay=1ms (100w/sec on logs)



PGBench ( inserts only) – Take II
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• At 128 clients  system (16cores)  was 58% idle (commit) , 56% idle (async)

• As more and more clients are added eventually performance seems to converge

• Runs with 256 clients and beyond using pgbench Clients pgbench running on a different server becomes cpu core limited 
and hence those results are not useful



TPC-E Like Workload with PG 8.3
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• At 7 cores number of clients increases beyond 110

• Increasing more cores beyond 8 doesn't seem to help much in terms of performance 

• Quick dtrace shows ProcArrayLock Exclusive waits increasing while committing transactions at high loads 



Some thoughts
• Two main Blocks for PostgreSQL Backend:
> READS
> LOCK WAITS (Top few):
> ProcArray Exclusive
>Dynamic Locks (Shared) IndexScan
>Dynamic Locks (Exclusive) InsertIndexTuples

• Reducing and modifying various indexes increased 
performance more than 2-3X but still limited due to 
core indexes required

• Haven't filtered out lock spins which keeps CPU busy 
(results in higher CPU utilization with more core without 
appropriate increase in throughput rates)  



IGEN with PostgreSQL on T2000
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• Sun Enterprise T2000 has 32 hardware threads of CPU

• Data and log  files on RAM (/tmp)

• Database reloaded everytime before the run 



IGEN with PostgreSQL on T2000

• First number is LockID, (Only 2 different locks pop up: ProcArrayLock == 4; WALWriteLock == 8)

• Second is Mode: S(hared)or E(xclusive) mode

• Third is Function P(arse), B(ind), E(xecute). 

• Example: procarraylock in S(hared) mode while doing a B(ind) operation will be reflected in the graph 4SB



OLTP Workload on PostgreSQL
• Top Light Weight Locks having increasing wait times 

as connections increases
> ProcArrayLock
> EXCLUSIVE - Called from ProcArrayEndTransaction() from 

CommitTransaction()
> SHARED - Called from GetSnapShotData()

> WALWriteLock
> XlogFlush() 

> WALInsertLock
> XLogInsert()

•



ProcArray LWLock Thoughts
• ProcArray Lock currently has one wait list

> If it encounters SHARED, it looks if the following wait-listed 
process is SHARED or not if it is wakes them up together

> If it Encounters EXCLUSIVE, it just wakes up that process
• Multiple SHARED process can execute 

simultaneously on multi-core, 
> maybe a two wait-list (SHARED, EXCLUSIVE) or 

something schedule  SHARED requests together might 
improve utilization

• Won't help EXCLUSIVE (which is the main problem) 
> Reduce Code Path 
> Use some sort of Messaging to synchronize



WALWriteLock & WALInsertLock 
• WALWriteLock can be controlled 

> commit_delay=10 (at expense of latency of individual commit) 
> synchronous_commit = off (for non-mission critical types)

• WALInsertLock (writing into the WAL buffers) 
eventually still is a problem 
> Even after increasing WAL Buffers, its  single write lock 

architecture  makes it a  contention point
• Making WALInsertLock more granular will certainly 

help scalability
> Some discussion on reserving WAL Buffer space and 

releasing locks earlier



Impact on workloads 
with  multi-terabyte 
data running 
PostgreSQL



Some Observations
• Its easy to reach a terabyte even with OLTP 

environments
• Even a single socket run for TPC-E could result 

close to about 1 TB data population
> http://tpc.org/tpce/tpce_price_perf_results.asp

• In some sense you can work around “writes” but 
“read” will block  and random read can have real 
poor response time bigger the database size

• Blocking Reads specially while holding locks is 
detrimental to performance and scaling

•

http://tpc.org/tpce/tpce_price_perf_results.asp


Impact on Sequential Scan
• Sequential Scan rate impact depends on not only on 

storage hardware but also CPU intense functions 
which depends on updates done to table since last 
vacuum
> Types of  functions with high CPU usage during sequential reads: 

HeapTupleSatisfiesMVCC (needs Vacuum to avoid this CPU 
cost),  heapgettup_pagemode, advance_* (count() fuction) 

> Blocking reads and then CPU intense functions results in 
inefficient usage of system resources which should be separated 
in two separate processes if possible

> Hard to predict rate of scan during Sequential scan with 
PostgreSQL 
> Example: Before Vacuum: Sequential scan takes 216.8sec
> After Vacuum: Same sequential scan takes 120.2sec



Impact on Index Range Scan
• Similar to sequential scan except still slower 
• High CPU usage functions include index_getnext(), 

_bt_checkkeys, HeapTupleSatisfiesMVCC, 
pg_atomic_cas (apart from BLOCKS happening with 
read)

• Slow enough to cause performance problems
> 26 reads/sec on index and 1409 reads/sec on table during a 

sample index range scan (with file system buffer on) Its really 
reads on tables that kills the range scan even when SQL only 
refers to columns in the index

> 205 seconds Vs 102 seconds (via sequential) while doing primary 
key range scan

•



Tools Utilities for DBA



Think about the DBA
• Multicore systems means more end users using the 

database
• More pressure on DBA to keep the scheduled downtime 

window small
• Keeping DBA's guessing (“is it done yet?”)  while running 

maintenance commands is like testing the breaking point of 
his patience

• Example: VACUUM FULL  - 
> Customer (DBA) reported it took 18 hrs to vacuum 3.4TB
> VACUUM is just an example, all maintenance commands 

need to be multi-core aware designed to handle multi-
terabyte data efficiently  



Tools Utilities
• Tools are generally used more as a single task at a time
• Problems with Tools using a Single Process approach

Compute Intensive IO Intensive

Maxes out 1 cpu/core/thread at a time
Wasted CPU Resources

Wated IO Resources

Uses 1 cpu/core/thread at a time
Wasted CPU Resources

Resulting System Utilization very poor
Most people do not run other tasks while

 doing maintenance jobs

*No indication when it will finish*



BACKUP Performance
• pg_dump  dbname 
> CPU limited with hot functions _ndoprnt, CopyAttributeOut, 

CopyOneRowTo, memcpy
> Processing about 36MB/sec when CPU is saturated
> Multiple pg_dump process could give about 91MB/sec 

which means if additional cores are used it could 
effectively help speed up backup

• Same goes for pg_recovery



VACUUM Performance
• We saw earlier state of last VACUUM is important for 

performance which means VACUUM is needed (apart from 
XID rollover)

• However VACUUM itself is very inefficient if there are 
cost_delays set
> Sample run on about 15GB table with vacuum_cost_delay=50: 
> CPU utilization : 2% avg
> Took  3:03:39    @ 1.39 MB/sec
> Hot functions: heap_prune_chain(30%), lazy_scan_heap(14%), 

HeapTupleSatisfiesVacuum(14%)  
• A heavily updated table can result in a bigger downtime just to get 

VACUUM completed on it



VACUUM Performance
• If costs for auto_vacuum are controlled and let DBA initiated 

VACUUM go full speed then (cost_limit=1, cost_delay=0)
• Hot functions include bsearch
> Sample run on about 15GB table: 
> CPU utilization : 0-55% avg core
> Took  0:18:8    @ 14.11 MB/sec
> Hot functions: heap_prune_chain, hash_search_with_hash_value, 

heap_freeze_tuple
• Even with this a 1TB table could take about 20 hours
• Maybe help with some sort of pipelining reads through one process 

while processing it with another



CREATE INDEX Performance
• Dropping Index takes about 10 seconds
• However index creation is much longer
> Depending on type of columns, the backend can process 

about 18MB/sec before its limited by core performance
> Hot functions are btint8cmp (in this case) 50%, 

dumptuples (25%), comparetup_index (9.1)%, 
timestamp_cmp(3%)

• In this particular index it was index on an id and a 
timestamp field.

• On a table that takes about 105 second to do a full 
sequential scan, it takes about 1078 seconds to create an 
index (10X)



Summary/Next Step
• Propose more projects in making DBA utilities multi-process 

capable to spread up the work  (eg VACUUM)
• Propose a separate background reader for sequential scans 

so that it can do processing more efficiently without blocking 
for read

• Propose re-thinking INDEX in multi-terabyte world



More Acknowledgements
• Greg Smith, Truviso - Guidance on PGBench
• Masood Mortazavi – PostgreSQL Manager @ Sun
• PostgreSQL Team @ Sun 



More Information
• Blogs on PostgreSQL
> Josh Berkus:  http://blogs.ittoolbox.com/database/soup 
> Jignesh Shah: http://blogs.sun.com/jkshah/
> Paul van den Bogaard: http://blogs.sun.com/paulvandenbogaard/ 
> Robert Lor: http://blogs.sun.com/robertlor/ 
> Tom Daly: http://blogs.sun.com/tomdaly/

• PostgreSQL on Solaris Wiki:
>  http://wikis.sun.com/display/DBonSolaris/PostgreSQL

• PostgreSQL Questions:
> postgresql-questions@sun.com 
> databases-discuss@opensolaris.org

http://blogs.ittoolbox.com/database/soup
http://blogs.sun.com/jkshah/
http://blogs.sun.com/paulvandenbogaard/
http://blogs.sun.com/robertlor/
http://blogs.sun.com/tomdaly/


Q & A



Backup Slides/ 
Additional Information



TPC-E Characteristics 
• Brokerage House workload
• Scale factor in terms of active customers to be used 

dependent on target performance (roughly Every 1K 
customer = 7.1GB raw data to be loaded)
• Lots of Constraints and Foreign keys
• Business logic (part of system) can be implemented 

via Stored Procedures  or other mechanisms
• Can be used to stress multiple features of database: 

Random IO reads/writes, Index performance, stored 
procedure performance, response times, etc



TPC-E Highlights
● Complex schema
● Referential Integrity
● Less partitionable
● Increase # of trans
● Transaction Frames
● Non-primary key access 

to data

● Data access 
requirements (RAID)

● Complex transaction 
queries

● Extensive foreign key 
relationships

● TPC provided core 
components
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