
Problems with PostgreSQL on
Multi-core Systems with Multi-
Terabyte Data

Jignesh Shah and
PostgreSQL Performance Team @ Sun
Sun Microsystems Inc

PGCon May 2008 - Ottawa

 PostgreSQL Performance Team
@Sun
• Staale Smedseng
• Magne Mahre
• Paul van den Bogaard
• Lars-Erik Bjork
• Robert Lor
• Jignesh Shah
• Guided by Josh Berkus

Agenda
• Current market trends
• Impact on workload with PostgreSQL on multicore

systems
> PGBench Scalability
> TPCE- Like Scalability
> IGEN Scalability

• Impact with multi-terabyte data running PostgreSQL
• Tools and Utilities for DBA
• Summary Next Steps

Current Market trends

Current Market Trends in Systems
• Quad-core sockets are current market standards
> Also 8-core sockets available now and could become a

standard in next couple of year
• Most common rack servers now have two sockets
> 8-core (or more) systems are the norm with trend going

to 12-16 core systems soon
• Most Servers have internal drives > 146 GB
> Denser in capacity, smaller in size but essentially same

or lower speed
> More denser in case of SATA-II drives

Current Market Trends in Software
• Software (including Operating Systems) have yet to

fully catch up with multi-core systems
> “tar” still single process utility

• Horizontal Scaling helps a lot but not a good clean
solution for multi-core systems

• Virtualization is the new buzzword for Consolidations
> Hides the fact that the software is not able to fully

capitalize the extra cores :-(
• Research being done on new paradigms
> Complexity of parallelized software is huge

Current Market Trends in Data
• 12 years ago, a 20GB data warehouse was

considered a big database
• Now everybody talks about 200GB-5TB databases
• Some 2005 Survey numbers:
> Top OLTP DB sizes = 5,973 GB to 23,101 GB
> Top DW DB Sizes = 17,685 GB to 100,386 GB
> Source http://www.wintercorp.com/VLDB/2005_TopTen_Survey/TopTenWinners_2005.asp

• Some 2007 Survey numbers:
> Top DB sizes = 20+ TB to 220 TB (6+ PB on tape)
> Source http://www.businessintelligencelowdown.com/2007/02/top_10_largest.html

http://www.wintercorp.com/VLDB/2005_TopTen_Survey/TopTenWinners_2005.asp
http://www.businessintelligencelowdown.com/2007/02/top_10_largest.html

Impact on workloads
with multi-cores
system running
PostgreSQL

PGBench (Modified)
• Custom insert.sql
> BEGIN;
> INSERT INTO history (tid, bid, aid, delta, mtime)

VALUES (:tid, :bid, :aid, :delta,
CURRENT_TIMESTAMP);

> END;
• pgbench -f insert.sql -s 1000 -c 1 -t 10000 pgbench

PGBench (inserts only)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2000

4000

6000

8000

10000

12000
Linear tps (async) tps (commit_sibling=5) tps(default)

Number of Clients

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

(tp
s)

• IOPS on logs during regular pgbench run is around 800 w/s which means transaction optimizations happening somewhere

• With commit_delay (sibling =5) at 16 clients IOPS on logs is 102 w/sec which means quite a bit of capacity on logs yet

• With synchronous_commit=off wal_writer_delay=100ms, the iops on the log devices is 10 w/sec

• Same performance with wal_writer_delay=10ms (50w/sec on logs) and wal_writer_delay=1ms (100w/sec on logs)

PGBench (inserts only) – Take II

1 2 4 8 16 32 64 128
400

4000

40000

400000

Linear tps (async) tps (commit_sibling=5) tps(default)

Number of Clients

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

(tp
s)

• At 128 clients system (16cores) was 58% idle (commit) , 56% idle (async)

• As more and more clients are added eventually performance seems to converge

• Runs with 256 clients and beyond using pgbench Clients pgbench running on a different server becomes cpu core limited
and hence those results are not useful

TPC-E Like Workload with PG 8.3

1 2 3 4 5 6 7 8 9

Idle-CPU TPC-E Linear Clients

Number of x64 Cores

Pe
rf

or
m

an
ce

• At 7 cores number of clients increases beyond 110

• Increasing more cores beyond 8 doesn't seem to help much in terms of performance

• Quick dtrace shows ProcArrayLock Exclusive waits increasing while committing transactions at high loads

Some thoughts
• Two main Blocks for PostgreSQL Backend:
> READS
> LOCK WAITS (Top few):
> ProcArray Exclusive
>Dynamic Locks (Shared) IndexScan
>Dynamic Locks (Exclusive) InsertIndexTuples

• Reducing and modifying various indexes increased
performance more than 2-3X but still limited due to
core indexes required

• Haven't filtered out lock spins which keeps CPU busy
(results in higher CPU utilization with more core without
appropriate increase in throughput rates)

IGEN with PostgreSQL on T2000

32 64 128 256 512 1024 1280 1536
0

20000

40000

60000

80000

100000

120000

140000

160000

iGen OLTP, 4 minute averages, varying thinktimes [ms], 32 HW-threads
1ms think 5ms think 10ms think 50ms think 100ms think 200ms think

Clients

TP
M

• Sun Enterprise T2000 has 32 hardware threads of CPU

• Data and log files on RAM (/tmp)

• Database reloaded everytime before the run

IGEN with PostgreSQL on T2000

• First number is LockID, (Only 2 different locks pop up: ProcArrayLock == 4; WALWriteLock == 8)

• Second is Mode: S(hared)or E(xclusive) mode

• Third is Function P(arse), B(ind), E(xecute).

• Example: procarraylock in S(hared) mode while doing a B(ind) operation will be reflected in the graph 4SB

OLTP Workload on PostgreSQL
• Top Light Weight Locks having increasing wait times

as connections increases
> ProcArrayLock
> EXCLUSIVE - Called from ProcArrayEndTransaction() from

CommitTransaction()
> SHARED - Called from GetSnapShotData()

> WALWriteLock
> XlogFlush()

> WALInsertLock
> XLogInsert()

•

ProcArray LWLock Thoughts
• ProcArray Lock currently has one wait list

> If it encounters SHARED, it looks if the following wait-listed
process is SHARED or not if it is wakes them up together

> If it Encounters EXCLUSIVE, it just wakes up that process
• Multiple SHARED process can execute

simultaneously on multi-core,
> maybe a two wait-list (SHARED, EXCLUSIVE) or

something schedule SHARED requests together might
improve utilization

• Won't help EXCLUSIVE (which is the main problem)
> Reduce Code Path
> Use some sort of Messaging to synchronize

WALWriteLock & WALInsertLock
• WALWriteLock can be controlled

> commit_delay=10 (at expense of latency of individual commit)
> synchronous_commit = off (for non-mission critical types)

• WALInsertLock (writing into the WAL buffers)
eventually still is a problem
> Even after increasing WAL Buffers, its single write lock

architecture makes it a contention point
• Making WALInsertLock more granular will certainly

help scalability
> Some discussion on reserving WAL Buffer space and

releasing locks earlier

Impact on workloads
with multi-terabyte
data running
PostgreSQL

Some Observations
• Its easy to reach a terabyte even with OLTP

environments
• Even a single socket run for TPC-E could result

close to about 1 TB data population
> http://tpc.org/tpce/tpce_price_perf_results.asp

• In some sense you can work around “writes” but
“read” will block and random read can have real
poor response time bigger the database size

• Blocking Reads specially while holding locks is
detrimental to performance and scaling

•

http://tpc.org/tpce/tpce_price_perf_results.asp

Impact on Sequential Scan
• Sequential Scan rate impact depends on not only on

storage hardware but also CPU intense functions
which depends on updates done to table since last
vacuum
> Types of functions with high CPU usage during sequential reads:

HeapTupleSatisfiesMVCC (needs Vacuum to avoid this CPU
cost), heapgettup_pagemode, advance_* (count() fuction)

> Blocking reads and then CPU intense functions results in
inefficient usage of system resources which should be separated
in two separate processes if possible

> Hard to predict rate of scan during Sequential scan with
PostgreSQL
> Example: Before Vacuum: Sequential scan takes 216.8sec
> After Vacuum: Same sequential scan takes 120.2sec

Impact on Index Range Scan
• Similar to sequential scan except still slower
• High CPU usage functions include index_getnext(),

_bt_checkkeys, HeapTupleSatisfiesMVCC,
pg_atomic_cas (apart from BLOCKS happening with
read)

• Slow enough to cause performance problems
> 26 reads/sec on index and 1409 reads/sec on table during a

sample index range scan (with file system buffer on) Its really
reads on tables that kills the range scan even when SQL only
refers to columns in the index

> 205 seconds Vs 102 seconds (via sequential) while doing primary
key range scan

•

Tools Utilities for DBA

Think about the DBA
• Multicore systems means more end users using the

database
• More pressure on DBA to keep the scheduled downtime

window small
• Keeping DBA's guessing (“is it done yet?”) while running

maintenance commands is like testing the breaking point of
his patience

• Example: VACUUM FULL -
> Customer (DBA) reported it took 18 hrs to vacuum 3.4TB
> VACUUM is just an example, all maintenance commands

need to be multi-core aware designed to handle multi-
terabyte data efficiently

Tools Utilities
• Tools are generally used more as a single task at a time
• Problems with Tools using a Single Process approach

Compute Intensive IO Intensive

Maxes out 1 cpu/core/thread at a time
Wasted CPU Resources

Wated IO Resources

Uses 1 cpu/core/thread at a time
Wasted CPU Resources

Resulting System Utilization very poor
Most people do not run other tasks while

 doing maintenance jobs

No indication when it will finish

BACKUP Performance
• pg_dump dbname
> CPU limited with hot functions _ndoprnt, CopyAttributeOut,

CopyOneRowTo, memcpy
> Processing about 36MB/sec when CPU is saturated
> Multiple pg_dump process could give about 91MB/sec

which means if additional cores are used it could
effectively help speed up backup

• Same goes for pg_recovery

VACUUM Performance
• We saw earlier state of last VACUUM is important for

performance which means VACUUM is needed (apart from
XID rollover)

• However VACUUM itself is very inefficient if there are
cost_delays set
> Sample run on about 15GB table with vacuum_cost_delay=50:
> CPU utilization : 2% avg
> Took 3:03:39 @ 1.39 MB/sec
> Hot functions: heap_prune_chain(30%), lazy_scan_heap(14%),

HeapTupleSatisfiesVacuum(14%)
• A heavily updated table can result in a bigger downtime just to get

VACUUM completed on it

VACUUM Performance
• If costs for auto_vacuum are controlled and let DBA initiated

VACUUM go full speed then (cost_limit=1, cost_delay=0)
• Hot functions include bsearch
> Sample run on about 15GB table:
> CPU utilization : 0-55% avg core
> Took 0:18:8 @ 14.11 MB/sec
> Hot functions: heap_prune_chain, hash_search_with_hash_value,

heap_freeze_tuple
• Even with this a 1TB table could take about 20 hours
• Maybe help with some sort of pipelining reads through one process

while processing it with another

CREATE INDEX Performance
• Dropping Index takes about 10 seconds
• However index creation is much longer
> Depending on type of columns, the backend can process

about 18MB/sec before its limited by core performance
> Hot functions are btint8cmp (in this case) 50%,

dumptuples (25%), comparetup_index (9.1)%,
timestamp_cmp(3%)

• In this particular index it was index on an id and a
timestamp field.

• On a table that takes about 105 second to do a full
sequential scan, it takes about 1078 seconds to create an
index (10X)

Summary/Next Step
• Propose more projects in making DBA utilities multi-process

capable to spread up the work (eg VACUUM)
• Propose a separate background reader for sequential scans

so that it can do processing more efficiently without blocking
for read

• Propose re-thinking INDEX in multi-terabyte world

More Acknowledgements
• Greg Smith, Truviso - Guidance on PGBench
• Masood Mortazavi – PostgreSQL Manager @ Sun
• PostgreSQL Team @ Sun

More Information
• Blogs on PostgreSQL
> Josh Berkus: http://blogs.ittoolbox.com/database/soup
> Jignesh Shah: http://blogs.sun.com/jkshah/
> Paul van den Bogaard: http://blogs.sun.com/paulvandenbogaard/
> Robert Lor: http://blogs.sun.com/robertlor/
> Tom Daly: http://blogs.sun.com/tomdaly/

• PostgreSQL on Solaris Wiki:
> http://wikis.sun.com/display/DBonSolaris/PostgreSQL

• PostgreSQL Questions:
> postgresql-questions@sun.com
> databases-discuss@opensolaris.org

http://blogs.ittoolbox.com/database/soup
http://blogs.sun.com/jkshah/
http://blogs.sun.com/paulvandenbogaard/
http://blogs.sun.com/robertlor/
http://blogs.sun.com/tomdaly/

Q & A

Backup Slides/
Additional Information

TPC-E Characteristics
• Brokerage House workload
• Scale factor in terms of active customers to be used

dependent on target performance (roughly Every 1K
customer = 7.1GB raw data to be loaded)
• Lots of Constraints and Foreign keys
• Business logic (part of system) can be implemented

via Stored Procedures or other mechanisms
• Can be used to stress multiple features of database:

Random IO reads/writes, Index performance, stored
procedure performance, response times, etc

TPC-E Highlights
● Complex schema
● Referential Integrity
● Less partitionable
● Increase # of trans
● Transaction Frames
● Non-primary key access

to data

● Data access
requirements (RAID)

● Complex transaction
queries

● Extensive foreign key
relationships

● TPC provided core
components

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

