Full-Text Search in PostgreSQL

A Gentle Introduction

Oleg Bartunov
Moscow University

oleg@sai.msu.su
Moscow
Russia

Teodor Sigaev
Moscow University

teodor@sigaev.ru
Moscow
Russia

Full-Text Search in PostgreSQL: A Gentle Introduction
by Oleg Bartunov and Teodor Sigaev

Copyright © 2001-2007 Oleg Bartunov, Teodor Sigaev

This document is a gentle introduction to the full-text search in ORDBMS PostgreSQL (version 8.3+). It covers basic
features and contains reference of SQL commands, related to the FTS.

Brave and smart can play with the new FTS - patch for the CVS HEAD is available tsearch_core!0.48.9z

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any
later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover texts, and with no Back-Cover Texts. A
copy of the license is included in the section entitled "GNU Free Documentation License".

1. http://www.sigaev.ru/misc/tsearch_core-0.48.9z

Table of Contents

IO o ST 0T [N Tt o o SRSV SPTTRRR 1
1.1. Full Text Search in databases.........ccvirrrieiinnceere s 1
1.1.2. What iS @OCUMEMR........c.ceeeeeeeeiesiese et e e see e eseese e snnssesenaeneenennens 1

1.2, FTS OVEIVIEW.....crueieireiiereeeeeetestesteseeeesessesssssessessesseseesessesseseessessssessessessensensessesessessessessensesenses 1
1.2.1. TSQUETY AN tSVECION.....c.cveuirietereeteresiese sttt ettt st sttt 2
1.2.2. FTS OPEIALOL ...ttt ettt sttt r e b b e et e n e nesne e enen 4

G T == 1S Tol o] o= = 1o 0 K F OSSOSO U TSP RO 4
1.3.1. ODtAINING tSVECTON.......coviuireeiireete ettt sttt sttt enene 4
1.3.2. ODtAINING ESOUEIY.....eeueiteiereetereete sttt sttt sttt b et bbb et b 6
1.3.3. RANKING SEAICH FESUILS......cc.ciieeiirieereee e 6
1.3.4. GELtNG MESUILS....c.eiviieteieieeeee ettt ettt se b 8
I T B o1 1T = 1= PSSTRN 8
1.3.6. SEOP WOIAS.....ceeteeeteieteeetee ettt ettt b e b s b e b e bt b e nn s e b e 9

R e IR (T L1 =SSP 10
1.5, FTS LIMIEALIONS.citiitiieieieee ettt sttt sttt st se e e e e s s ae b st e e e e e e st ebesbeseeseeeannas 10
1.6. A Brief History of FTS in POStOreSQL.......ccoiiirieenesie et s 10
1.6.1. Pre-tSEAICH. ..o bbb e 11
1.6.2. TSEAICH V..ot st s b e st 11
1.6.3. TSEAICKH V2ot e 11
1.6.4. FTS CUITENL ...ttt e 12

L7 LINKS ettt R e n e 12
1.8, FTS TOUQ.....u ittt sttt e b bt b et 12
1.9. ACKNOWIEAGEMENTS.ocvieiieiiric et 13
2. FTS Operators and FUNCHONS.......ccccciiiiiiesereereeeste s ste e e et te e sae e eseste e sressesseseesesnestessesseneens 14
P N e BN 0] =T - o | S PSR SP PP 14
AV Y = Tox (o) Q@] o 1T - Vo] 5 = 15
P T O 10 1= VA @ 1T = 11 L= 16
pZAC T R @ 10 1= VA =11 Vo PR 18
2.3.2. OPErators fOr tSOUEEY.....ciuitiirieirieereeieree ettt sttt s b e st st s sbe e sbe e 19
2.3.3. INUEX fOF tSQUEEY ...ttt ettt s st s b e s b et 20

2.4, PArSer fUNCLONS. ..ottt st et sae e eseesensesee st e nseneenes 20
2.5, RANKING. ..ttt b et b e et b et bbbt e b 21
B2 == Vo |1 = SR 22
P B e U1 o T T o3PS 22
P2 S T o 1 o] T T [P S 24
2.8.1. SIMPIE ICHONALYcueeetieeteeeieietee ettt b e e b e e b e b e b 25
2.8.2. ISPEII AICHIONAIY.....evetereetereeteeeiee ettt eb e b e e b b sr e 25
2.8.3. Snowball stemmiNg diCHONALY........c.cerieirieririeereeiereree e 27
2.8.4. SYNONYM AICHONAIY.cvieeteeitiirieiereeie ettt b e e bbb b e 27
2.8.5. TheSAUIUS ICHIONALY.cc.eieeeeriire ettt e b e b s s eeneas 28
2.8.5.1. Thesaurus configuratiQn...........ocooeoerrerinenereeee e 29

2.8.5.2. TheSauruS eXamPIES......ccooiririrereeieere et 29

2.9. FTS CONTIQUIALION. ..ottt sttt st eb b s e et e e 30
P (O R B 7= o 18 o o oo TR OSSP 31
FZ I =T | IS 0 o oo) SO TUTPTPTR 32

[IS R L (<1 (=] 07 TR 1

| SQL COMMANGS.....cuiitiitiriirieieieeee et e ettt s e ee e e eenee e saestesbesseseeneesesteseeseesenseneenessessenseneeneanens 2
CREATE FULLTEXT CONFIGURATION........ccitiiiecit e seseieesie e s ste e e e ne e 3
DROP FULLTEXT CONFIGURATION......ccoiititetitetiteiseeeseetesestesesteestesesaesesassesessesessenessens 6
ALTER FULLTEXT CONFIGURATIONccocitiiiisiisteisiees et ne e 7
CREATE FULLTEXT DICTIONARYoottiitiirieiirieresietesieeseeesessesessesessesessssessesessesessssessesenes 9
DROP FULLTEXT DICTIONARYooiitiirietirieisiessieeseseesees et stese s ssesessssesessns 11
ALTER FULLTEXT DICTIONARYoctiitiieiiisiiisieesieresiesesae e sesss e sensssssessssessssessesenes 12
CREATE FULLTEXT MAPPING.......oot ettt sae et st st nessene e 13
ALTER FULLTEXT MAPPING.......ccoicirietietiisieiseesiee st ssesessese s 15
DROP FULLTEXT MAPPING......cccvtitrteirietsieese sttt ssesessssesessens 17
CREATE FULLTEXT PARSER.....cocttieireiriee ettt st sttt 18
DROP FULLTEXT PARSER......cctiiirietretre et 20
ALTER FULLTEXT PARSER......coctieirieise sttt es 21
ALTER FULLTEXT ... OWNER......cciiiireiiirtiiriecsieerie et es 22
COMMENT ON FULLTEXT ...ttt sttt sseseseebesestesessenessenessas 23

LN o] o 1T o 1= 24

F N IS @0]][] (= U1 (o] = 1 S 25

B. FTS Parser EXAMPIE........cccoveiiiieie et e ettt e ne e ssestesaeseenannens 28
B.L. PAISEI SOUICES.....uiiuieeieieriesie sttt ettt st e se e b e r e s e b et st r e b e s e e se e e ene e st snesr e s e s 29

C. FTS DiCtioNary EXAMPIE.....coo ittt sttt 33

o = 37

Chapter 1. FTS Introduction

1.1. Full Text Search in databases

Full-Text Search FTS) is a search for the documents, which satigfgry and, optionally, return them in
someorder . Most usual case is to find documents containingadry terms and return them in order
of their similarity to thequery . Notions ofquery andsimilarity are very flexible and depend on
specific applications. The simplest search machine congsiderg as a set of words argimilarity -
as how frequent are query words in the document.

Ordinary full text search engines operate with collection of documents where document is considered as
a "bag of words", i.e., there is a minimal knowledge about the document structure and its metadata. Big
search machines make use of sophisticated heuristics to get some metadataijtschusor(s),

modification date , but their knowledge is limited by web site owner policy. But, even if you have a

full access to the documents, very often, document itself, as it shown to the visitor, depends on many
factors, which makes indexing of such dynamical documents practically impossible and actually, search
engines fail here'The Hidden Webphenomena). Moreover, modern information systems are all database
driven and there is a need in IR (Information Retrieval) style full text search inside databadeilivith
conformanceo the database principles (ACID). That's why, many databases have built-in full text search
engines, which allow to combine text searching and additional metadata, stored in various tables and
available through powerful and standard SQL language.

1.1.1. What is a document ?

Document, in usual meaning, is a text file, that one could open, read and modify. Search machines parse
text files and store associations of lexemes (words) with their parent document. Later, these associations
used to search documents, which contain query words. In databases, notion of document is much complex,
it could be any textual attribute or their combination (concatenation), which in turn may be stored in
various tables or obtained on-fly. In other words, document looks as it were constructed from different
pieces (of various importance) for a moment of indexing and it might be not existed as a whole. For
example,

SELECT title || author || abstract || body as document
FROM messages
WHERE mid = 12;

SELECT m.title || m.author || m.abstract || d.body as document
FROM messages m, docs d
WHERE mid = did and mid = 12;

Document can be ordinary file, stored in filesystem, but accessible through database. In that case, database
used as a storage for full text index and executor for searches. Document processed outside of database
using external programs. In any cases, it's important, that document must be somretoelyidentified.

Actually, in previous examples we should usalesce function to prevent document to brJLLif some
of its part iSNULL

Chapter 1. FTS Introduction

1.2. FTS Overview

Text search operators in database existed for years. PostgreSQJ=hasIKE, ILIKE operators for
textual datatypes, but they lack many essential properties required for modern information system:

- there is no linguistic support, even in english, regular expressions are not eneaigiies ->
satisfy , for example. You may miss documents, which contains wetidfies , although certainly
would love to find them when search fedtisfy . It is possible to us©Rto searchany of them, but
it's boring and ineffective (some words could have several thousands of derivatives).
« they provide no ordering (ranking) of search results, which makes them a bit useless, unless there are
only a few documents found.
- they tends to be slow, since they process all documents every time and there is no index support.

Theimprovementso the FTS came from the ideapoeprocesslocument at index time to save time later,
at a search stage. Preprocessing includes:

Parsing document to lexemé#s useful to distinguish various kinds of lexemes, for examgilgits,

words, complex words, email address , since different types of lexemes can be processed dif-
ferent. It's useless to attempt normali@mail address using morphological dictionary of russian
language, but looks reasonable to pick dorhain name and be able to search fdomain name. In
principle, actual types of lexemes depend on specific applications, but for plain search it’'s desirable to
have predefined common types of lexemes.

Applying linguistic rulego normalize lexeme to theinfinitive form so one should not bother enter-
ing search word in specific form. Taking into account type of lexeme obtained before provides rich
possibilities for normalization.

Storepreprocessed document in a way, optimized for searching, for example, represent document as a
sorted array of lexemes. Along with lexemes itself it's desirable to store positional information to use

it for proximity ranking , SO that document which contains more "dense" region with query words
assigned a higher rank than one with query words scattered all over.

PostgreSQL is an extendable database, so it's natural to introduce a new dataStyptsn(1.2.1
tsvector for storing preprocessed document asguery for textual queries. Also, full-text search
operator (FTS)@@s defined for these data typeSgction 1.2.2 FTS operator can be accelerated using
indices Gection 2.7.

1.2.1. Tsquery and tsvector

tsvector

tsvector is a data type, which represents document, and optimized for FTS. In simple phrase,
tsvector is a sorted list of lexemes, so even without index support full text search should performs
better than standargLIKE operators.

=# select 'a fat cat sat on a mat and ate a fat rat’::tsvector;
tsvector

Chapter 1. FTS Introduction

‘a’ 'on’ ’and’ ’'ate’ 'cat’ 'fat’ 'mat’ 'rat’ 'sat’
Notice, thatspace is also lexeme !
=# select 'space ” " is a lexeme’:tsvector;
tsvector
‘a’ is’ ' 'space’ ’lexeme’

Each lexeme, optionally, could have positional information, which usepréeimity ranking

=# select 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:;7 and:8 ate:9 a:10 fat:11 rat:12"::tsvector;
tsvector

'a1,6,10 'on’:5 'and’:8 ’'ate’:9 ’'cat:3 'fat:2,11 'mat’:7 'rat:12 ’'sat’:4
Each position of a lexeme can be labeled by one of 'A,'B’,C’,/D’, where 'D’ is default. These labels
can be used to indicate group membership of lexeme with diffémgudrtanceor rank, for example,
reflect document structure. Actually, labels are just a way to differentiate lexemes. Actual values will
be assigned at search time and used for calculation of document rank. This is very convenient to
control and tune search machine.

Concatenation operator -tsvector || tsvector "constructs" document from several parts.
The order is important ifsvector contains positional information. Of course, usi®QL join
operator, it is possible to "build" document using different tables.

=# select 'fat:1 cat:2":tsvector || 'fat:1 rat:2"::itsvector;
?column?

‘cat’:2 ‘fat:1,3 'rat4
=# select 'fat:1 rat:2":tsvector || 'fat:1 cat:2"::itsvector;
?column?

‘cat4 ’fat:1,3 'rat’:2
tsquery

Tsquery is a data type for textual queries with support of boolean opera®réAND), | (OR),
parenthesis . Tsquery consists of lexemes (optionally labeled by letter[s]) with boolean operators
between.

=# select 'fat & cat':tsquery;
tsquery

fat’ & ’cat’

=# select fat:ab & cat’:tsquery;

tsquery

fat"AB & ’'cat’
Labels could be used to restrict search region, which allows to develop different search engines using
the same full text index.

tsqueries could be concatenated usigg (AND-ed) and|| (OR-ed) operators.

test=# select 'a & b’:tsquery && ’c|d:tsquery;
?column?

Chapter 1. FTS Introduction

lal & lbl & (ICI | ldl)
test=# select 'a & b’:tsquery || 'c|d:tsquery;
?column?

‘a &b | (¢ |d)

1.2.2. FTS operator

FTS in PostgreSQL provides operat@idor the two data typestsquery andtsvector , which rep-
resents, correspondingly, document and query. Also, FTS operator has suppeXTofARCHARdata
types, which allows to setup simple full-text search, but without ranking support.

tsvector @@ tsquery
tsquery @@ tsvector
textlvarchar @@ text|tsquery

Full text search operata@® @eturnsTRUEIf tsvector containgtsquery

=# select 'cat & rat’:: tsquery @@ ’'a fat cat sat on a mat and ate a fat rat’:tsvector;
?column?

=# select 'fat & cow’: tsquery @@ ’'a fat cat sat on a mat and ate a fat rat’:tsvector;
?column?

. Basic operations

To implement full-text search engine we need some functions to ofstaictor from a document and
tsquery from user’s query. Also, we need to return results in some order, i.e., we need a function which
compare documents in respect to their relevance testhuery . FTS in PostgreSQL provides support of

all of these functions, introduced in this section.

1.3.1. Obtaining tsvector

FTS in PostgreSQL provides functiaa tsvector , which transforms document tevector data
type. More details is available fBection 2.2but for now we consider a simple example.

=# select to_tsvector('english’, 'a fat cat sat on a mat - it ate a fat rats’);
to_tsvector

‘ate”:9 ‘cat:3 'fat:2,11 'mat’:7 'rat:12 ’'sat':4

Chapter 1. FTS Introduction

In the example above we see, that resuttedctor does not containg,on,it , wordrats became
rat and punctuation sign was ignored.

to_tsvector function internally calls parser function which breaks documenfaf cat sat on a

mat - it ate a fat rats) on words and corresponding type. Default parser recognizes 23 types, see
Section 2.4or details. Each word, depending on its type, comes through a stack of dictioreesh

1.3.5. At the end of this step we obtain what we caleaeme For examplejats becameat , because

one of the dictionaries recognized that woatk is a plural form ofrat . Some words are treated as a
"stop-word" Section 1.3.5and ignored, since they are too frequent and have no informational value. In
our example these ason,it . Punctuation sigh was also ignored, because it’s tyj$péce symbols)

was forbidden for indexing. All information about the parser, dictionaries and what types of lexemes to
index contains in the full-text configuratio®éction 2.9. It's possible to have many configurations and
actually, many predefined system configurations are available for different languages. In our example we
used default configuratioenglish ~ for english language.

To make things clear, below is an output freendebug function (Section 2.10, which show all details
of FTS machinery.

=# select * from ts_debug(english’;/a fat cat sat on a mat - it ate a fat rats’);

Alias | Description | Token | Dicts list | Lexized token

+ + + +
lword | Latin word | a | {pg_catalog.en_stem} | pg_catalog.en_stem: {}
blank | Space symbols | | [
lword | Latin word | fat | {pg_catalog.en_stem} | pg_catalog.en_stem: {fat}
blank | Space symbols | | |
lword | Latin word | cat | {pg_catalog.en_stem} | pg_catalog.en_stem: {cat}
blank | Space symbols | | [
lword | Latin word | sat | {pg_catalog.en_stem} | pg_catalog.en_stem: {sat}
blank | Space symbols | | [
lword | Latin word | on | {pg_catalog.en_stem} | pg_catalog.en_stem: {}
blank | Space symbols | | [
lword | Latin word | a | {pg_catalog.en_stem} | pg_catalog.en_stem: {}
blank | Space symbols | | [
lword | Latin word | mat | {pg_catalog.en_stem} | pg_catalog.en_stem: {mat}
blank | Space symbols | | [
blank | Space symbols | - | [
lword | Latin word | it | {pg_catalog.en_stem} | pg_catalog.en_stem: {}
blank | Space symbols | | [
lword | Latin word | ate | {pg_catalog.en_stem} | pg_catalog.en_stem: {ate}
blank | Space symbols | | [
lword | Latin word | a | {pg_catalog.en_stem} | pg_catalog.en_stem: {}
blank | Space symbols | | [
lword | Latin word | fat | {pg_catalog.en_stem} | pg_catalog.en_stem: {fat}
blank | Space symbols | | [
lword | Latin word | rats | {pg_catalog.en_stem} | pg_catalog.en_stem: {rat}
(24 rows)

Functionsetweight() is used to labeisvector . The typical usage of this is to mark out the different
parts of document (say, importance). Later, this can be used for ranking of search results in addition to the

Chapter 1. FTS Introduction

positional information (distance between query terms). If no ranking is required, positional information
can be removed fromsvector usingstrip() function to save some space.

Sinceto_tsvector (NULL) producesNULL, it is recomended to usmalesce to avoid unexpected re-
sults. Here is the safe method of obtainiegector of structured document.

test=# update tt set ti=\

test=# setweight(to_tsvector(coalesce(title,”)), 'A’) I\
test=# setweight(to_tsvector(coalesce(keyword,”)), 'B") ||\
test=# setweight(to_tsvector(coalesce(abstract,”)), 'C’) ||\
test=# setweight(to_tsvector(coalesce(body,”)), 'D’);

1.3.2. Obtaining tsquery

FTS provides two functions for obtainingquery - to_tsquery and plainto_tsquery (Section
2.3.2).
=# select to_tsquery('english’, fat & rats’);
to_tsquery
fat’ & 'rat’

=# select plainto_tsquery(’english’, 'fat rats’);
plainto_tsquery

fat’ & 'rat’

Tsquery data type obtained at search time and the same wayeador (Section 1.3.).

There is a powerful technique to rewrite query online, catlegry Rewriting (Section 2.3.7). It

allows to manage searches on the assumption of application semantics. Typical usage is a synonym exten-
sion or changing query to direct search in the necessary direction. The nice feaurgyofRewriting

is that it doesn't require reindexing in contrast of usihgsaurus dictionary Section 2.8.h Also,

Query Rewriting is table-driven, so it can be configured online.

1.3.3. Ranking search results

Ranking of search results is de-facto standard feature of all search engines and PostgreSQL FTS provides
two predefined ranking functions, which attempt to produce a measure of how a document is relevant
to the query. In spite of that the concept of relevancy is vague and is very application specific, these
functions try to take into account lexical, proximity and structural information. Detailed description is
available Gection 2.%. Different application may require an additional information to rank, for example,
document modification time.

Lexical part of ranking reflects how often are query terms in the document, proximity - how close in
document query terms are and structural - in what part of document they occur.

Chapter 1. FTS Introduction

Since longer document has a bigger chance to contain a query, it is reasonable to take into account the
document size. FTS provides several options for that.

It is important to notice, that ranking functions does not use any global information, so, it is impossible
to produce a fair normalization to 1 or 100%, as sometimes required. However, a simple technique, like
rank/(rank+1) can be applied. Of course, this is just a cosmetic change, i.e., ordering of search results
will not changed.

Several examples are shown below. Notice, that second example used normalized rank.
=# select title, rank_cd(’{0.1, 0.2, 0.4, 1.0}.fts, query) as rnk

from apod, to_tsquery(’neutrino|(dark & matter)’) query
where query @@ fts order by rnk desc limit 10;

title | rnk
Neutrinos in the Sun | 3.1
The Sudbury Neutrino Detector | 2.4
A MACHO View of Galactic Dark Matter | 2.01317
Hot Gas and Dark Matter | 191171
The Virgo Cluster: Hot Plasma and Dark Matter | 1.90953
Rafting for Solar Neutrinos | 1.9
NGC 4650A: Strange Galaxy and Dark Matter | 1.85774
Hot Gas and Dark Matter | 1.6123
Ice Fishing for Cosmic Neutrinos | 1.6
Weak Lensing Distorts the Universe | 0.818218

=# select title, rank_cd(’{0.1, 0.2, 0.4, 1.0},fts, query)/
(rank_cd({0.1, 0.2, 0.4, 1.0}.fts, query) + 1) as rnk from
apod, to_tsquery('neutrino|(dark & matter)’) query where
query @@ fts order by rnk desc limit 10;

title [rnk
Neutrinos in the Sun | 0.756097569485493
The Sudbury Neutrino Detector | 0.705882361190954
A MACHO View of Galactic Dark Matter | 0.668123210574724
Hot Gas and Dark Matter | 0.65655958650282
The Virgo Cluster: Hot Plasma and Dark Matter | 0.656301290640973
Rafting for Solar Neutrinos | 0.655172410958162
NGC 4650A: Strange Galaxy and Dark Matter | 0.650072921219637
Hot Gas and Dark Matter | 0.617195790024749
Ice Fishing for Cosmic Neutrinos | 0.615384618911517
Weak Lensing Distorts the Universe | 0.450010798361481
First argument imank_cd (’{0.1, 0.2, 0.4, 1.0}) is an optional parameter, which specifies

actual weights for labelB,C,B,A , used in functiorsetweight . These default values show that lexemes
labeled a®\ are 10 times important than one with lalmel

Ranking could be expensive, since it requires consuttimgctor of all found documents, which is 10
bound and slow. Unfortunately, it is almost impossible to avoid, since FTS in databases should works
without index, moreover, index could be lossy (GiST index, for example), so it requires to check docu-
ments to avoid false hits. External search engines doesn't suffer from this, because ranking information
usually contain in the index itself and it is not needed to read documents.

Chapter 1. FTS Introduction

1.3.4. Getting results

To present search results it is desirable to show part(s) of documents which somehow identify its context
and how it is related to the query. Usually, search engines show fragments of documents with marked
search terms. FTS provides functibeadline() (see details irSection 2.% for this. It uses original
document, notsvector , so it is rather slow and should be used with care. Typical mistake is to call
headline() for all found documents, while usually one need only 10 or so documents to show. SQL
subselects help here. Below is an example of that.

SELECT id,headline(body,q),rank
FROM (SELECT id,body,q, rank_cd (ti,q) AS rank FROM apod, to_tsquery('stars’) g
WHERE ti @@ q ORDER BY rank DESC LIMIT 10) AS foo;

1.3.5. Dictionaries

Dictionary is aprogram which accepts lexeme(s) on input and returns:

. array of lexeme(s) if input lexeme is known to the dictionary
- void array - dictionary knows lexeme, but it's stop word.
« NULL- dictionary doesn't recognized input lexeme

WARNING:Data files, used by dictionaries, should beénver_encoding to avoid possible problems
!

Usually, dictionaries used for normalization of words and allows user to not bother which word form use
in query. Also, normalization can reduce a sizesvkector . Normalization not always has linguistic
meaning and usually depends on application semantics.

Some examples of normalization:

« Linguistic - ispell dictionaries try to reduce input word to its infinitive, stemmer dictionaries remove
word ending.
+ All URL-s are equivalent to the http server:
- http://www.pgsql.ru/db/mw/index.html
- http://www.pgsql.ru/db/mw/
« http:/iwww.pgsql.ru/db/../db/mw/index.html

- Colour names substituted by their hexadecimal valued,green,blue, magenta -> FF0000,
OOFF00, OO00FF, FFOOFF

« Cut fractional part to reduce the number of possible numbel3,1g81592653593.1415926,3. 14 will
be the same after normalization, if leave only two numbers after period. See dictionary for integers
(Appendix Q for more details.

FTS provides several predefined dictionarigedtion 2.8, available for many languages, and SQL com-
mands to manipulate them onlinegft). Besides this, it is possible to develop custom dictionaries using
API, see dictionary for integesppendix G for example.

Chapter 1. FTS Introduction

CREATE FULLTEXT MAPPINGommand (CREATE FULLTEXT MAPPING) binds specific type of
lexeme and a set of dictionaries to process it. Lexeme come through a stack of dictionaries until some
dictionary identify it as a known word or found it is a stop-word. If no dictionary will recognize a lexeme,
than it will be discarded and not indexed. A general rule for configuring stack of dictionaries is to place
at first place the most narrow, most specific dictionary, then more general dictionary and finish it with
very general dictionary, like snowball stemmer or simple, which recognize everything. For example, for
astronomy specific searchsfro_en configuration) one could binvord (latin word) with synonym
dictionary of astronomical terms, general english dictionary and snowball english stemmer.

=# CREATE FULLTEXT MAPPING ON astro_en FOR Iword WITH astrosyn, en_ispell, en_stem;

Functionlexize can be used to test dictionary, for example:

=# select lexize('en_stem’, ’'stars’);
lexize

Also, ts_debug function (Section 2.1Q is very useful.

1.3.6. Stop words

Stop words are the words, which are too popular and appear almost in every document and have no
discrimination value, so they could be ignored in full-text index. For example, every english text contains
worda and it is useless to have it in index. However, stop words does affect to the positisvectar

which in turn, does affect ranking.

=# select to_tsvector(’english’,’in the list of stop words’);
to_tsvector

list:3 'stop’:5 'word’:6

The gaps between positions 1-3 and 3-5 are because of stop words, so ranks, calculated for document
with/without stop words, are quite different !

=# select rank_cd ('{1,1,1,1}, to_tsvector(’english’,'in the list of stop words’), to_tsquery(list & stop));
rank_cd

postgres=# select rank_cd ('{1,1,1,1}, to_tsvector(’english’,’list stop words’), to_tsquery(list & stop’));
rank_cd

Chapter 1. FTS Introduction

It is up to the specific dictionary, how to treat stop-words. For exaniggel) dictionaries first normal-
ized word and then lookups it in the list of stop words, wistkemmers first lookups input word in stop
words. The reason for such different behaviour is an attempt to decrease a possible noise.

1.4. FTS features

Full text search engine in PostgreSQL is fully integrated into the database core. Its main features are:

« Itis mature, more than 5 years of development

« Supports multiple configurations, which could be managed using a set of SQL commands.

- Flexible and rich linguistic support using pluggable user-defined dictionaries with stop words supports.
Several predefined templates, including ispell, snowbaksaurus andsynonym dictionaries, are
supplied.

« Full multibyte support, UTF-8 as well

- Sophisticated ranking functions with support of proximity and structure information allow ordering of
search results according their similarity to the query.

- Index support wittconcurrencyandrecoverysupport

+ Rich query language with query rewriting support

1.5. FTS Limitations

Current implementation of FTS has some limitations.

« Length of lexeme < 2K

- Length of tsvector (lexemes + positions) < 1Mb

+ The number of lexemes <%

« 0< Positional information < 16383

- No more than 256 positions per lexeme

« The number of nodes (lexemes + operations) in tsquery < 32768

For comparison, PostgreSQL 8.1 documentation consists of 10441 unique words, total 335420 words and
most frequent word 'postgresql’ mentioned 6127 times in 655 documents.

Another example - PostgreSQL mailing list archive consists of 910989 unique words, total 57,491,343
lexemes in 461020 messages.

10

Chapter 1. FTS Introduction

1.6. A Brief History of FTS in PostgreSQL

This is a historical notes about full-text search in PostgreSQL by authors of FTS Oleg Bartunov and
Teodor Sigaev.

1.6.1. Pre-tsearch

Development of full-text search in PostgreSQL began from OpehRTZD00 after realizing that we need

a search engine optimized fonline updates with access to metadata from the datal¥dss is essential

for online news agencies, web portals, digital libraries, etc. Most search engines available at that time
utilize an inverted index which is very fast for searching but very slow for online updates. Incremental
updates of an inverted index is a complex engineering task while we needed something light, free and
with the ability to access metadata from the database. The last requirement was very important because
in a real life search application should always consult metadata (topic, permissions, date range, version,
etc.).

We extensively use PostgreSQL as a database backend and have no intention to move from it, so the prob-
lem was to find a data structure and a fast way to access it. PostgreSQL has rather unique data type for
storing sets (think about wordsjrrays , but lacks index access to them. During our research we found a
paper of Joseph Hellerstein, who introduced an interesting data structure suitable for sets - RD-tree (Rus-
sian Doll tree). Further research lead us to the idea to use GiST for implementing RD-tree, but at that time
the GiST code was untouched for a long time and contained several bugs. After work on improving GiST
for version 7.0.3 of PostgreSQL was done, we were able to implement RD-Tree and use it for index ac-
cess to arrays of integers. This implementation was ideally suited for small arrays and eliminated complex
joins, but was practically useless for indexing large arrays. The next improvement came from an idea to
represent a document by a single bit-signature, a so-called superimposed signature (see "Index Structures
for Databases Containing Data Items with Set-valued Attributes”, 1997, Sven Helmer for details). We
developed the contrib/intarray module and used it for full text indexing.

1.6.2. Tsearch v1

It was inconvenient to use integer id’s instead of words, so we introduced a new datatitype - a
searchable data type (textual) with indexed access. This was a first step of our work on an implementation
of a built-in PostgreSQL full-text search engine. Even thotisghrch vi had many features of a search
engine it lacked configuration support and relevance ranking. People were encouraged to use OpenFTS,
which provided relevance ranking based on positional information and flexible configuration. OpenFTS
v.0.34 was the last version based on tsearch v1.

1.6.3. Tsearch v2

People recognized tsearch as a powerful tool for full text searching and insisted on adding ranking support,
better configurability, etc. We already thought about moving most of the features of OpenFTS to tsearch,
and in the early 2003 we decided to work on a new version of tsearch. We abandoned auxiliary index
tables,used by OpenFTS to store positional information, and modifietktithe type to store them

1. http://openfts.sourceforge.net

11

Chapter 1. FTS Introduction

internally. We added table-driven configuration, support of ispell dictionaries, snowball stemmers and the
ability to specify which types of lexemes to index. Now, it's possible to generate headlines of documents
with highlighted search terms. These changes make tsearch user friendly and turn it into a really powerful
full text search engine. For consistency, tsearch functions were renatited, type becamesvector

To allow users of tsearch vl smooth upgrade, we named the module as tsearch2. Since version 0.35
OpenFTS uses tsearch?2.

PostgreSQL version 8.2 contains a major upgrade of tsearch v2 - multibyte and GIN (A Generalized
Inverted Index) support. Multibyte support provides full UTF-8 support and GIN scales tsearch v2 to mil-
lions of documents. Both indices (GiST and GiN) are concurrent and recoverable. All these improvements
bring out FTS to enterprise level.

1.6.4. FTS current

Since PostgreSQL 8.3 release, there is no need to compile and install contrib/tsearch2 module, it's already
installed in your system with PostgreSQL. Most important new features are:

« A set of SQL commands, which controls creation, modification and dropping of FTS objects. This
allow to keep dependencies and correct dumping and dropping.

« Many FTS configurations already predefined for different languages with snowball stemmers are avail-
able.

- FTS objects now have ownership and namespace support like other postgresql’s objects.

« Current FTS configuration could be defined us@igCvariabletsearch_conf_name

- Default FTS configuration is now schema specific.

1.7. Links

Tsearch2
An Official Home page of Tsearch2.
Tsearch Wiki
Tsearch2 Wiki contains many informations, work in progress.
OpenFT3
OpenFTS search engine
OpenFTS mailing list
OpenFTS-general mailing list used for discussion about OpenFTS itself and FTS in PostgreSQL.

aoroN

http://wwww.sai.msu.su/~megera/postgres/gist/tsearch/V2
http://www.sai.msu.su/~megera/wiki/Tsearch2
http://openfts.sourceforge.net
http://lists.sourceforge.net/lists/listinfo/openfts-general

12

Chapter 1. FTS Introduction
1.8. FTS Todo

This place reserved for FTS.

1.9. Acknowledgements

The work on developing of FTS in PostgreSQL was supported by several companies and authors are glad
to express their gratitude to the University of Mannheim, jfg:networks, Georgia Public Library Service

and LibLime Inc., Enterprizedb PostgreSQL Development Fund, Russian Foundation for Basic Research,
Rambler Internet Holding.

13

Chapter 2. FTS Operators and Functions

Vectors and queries both store lexemes, but for different purposesedior stores the lexemes of the
words that are parsed out of a document, and can also remember the position of each wqueryA
specifies a boolean condition among lexemes.

Any of the following functions with a configuration argument can use either an integer id or textual
ts_name to select a configuration; if the option is omitted, then the current configuration is used. For
more information on the current configuration, read the next sectidection 2.9

2.1. FTS operator

TSQUERY @@ TSVECTOR
TSVECTOR @@ TSQUERY

ReturnsTRUEIf TSQUERYontained inTSVECTORINAFALSE otherwise.

=# select 'cat & rat’:: tsquery @@ 'a fat cat sat on a mat and ate a fat rat’:tsvector;
?column?

=# select 'fat & cow’:: tsquery @@ ’'a fat cat sat on a mat and ate a fat rat’::tsvector;
?column?

TEXT @@ TSQUERY
VARCHAR @@ TSQUERY

ReturnsTRUEIf TSQUERYontained inTEXT/VARCHARaNdFALSE otherwise.

=# select 'a fat cat sat on a mat and ate a fat rat::text @@ ’'cat & rat’:: tsquery;
?column?

=# select 'a fat cat sat on a mat and ate a fat rat::text @@ ’cat & cow’:: tsquery;
?column?

TEXT @@ TEXT
VARCHAR @@ TEXT

ReturnsTRUEIf TEXT contained inTEXT/VARCHARaNdFALSE otherwise.

postgres=# select 'a fat cat sat on a mat and ate a fat ratt @@ ’cat rat’;
?column?

postgres=# select 'a fat cat sat on a mat and ate a fat ratt @@ ’cat cow’;
?column?

14

Chapter 2. FTS Operators and Functions

f
For index support of FTS operator consg#ction 2.7

2.2. Vector Operations

to_tsvector([configuration A document TEXT) RETURNS TSVECTOR

Parses a document into tokens, reduces the tokens to lexemes, and ret¢uesoa which lists
the lexemes together with their positions in the document in lexicographic order.

strip(vector TSVECTOR) RETURNS TSVECTOR

Return a vector which lists the same lexemes as the given vector, but which lacks any information
about where in the document each lexeme appeared. While the returned vector is thus useless for
relevance ranking, it will usually be much smaller.

setweight(vector TSVECTOR, letter) RETURNS TSVECTOR

This function returns a copy of the input vector in which every location has been labeled with either
the letterA’ ,’B’ , or’C’ , or the default labelD’ (which is the default with which new vectors

are created, and as such is usually not displayed). These labels are retained when vectors are con-
catenated, allowing words from different parts of a document to be weighted differently by ranking
functions.

vectorl || vector2
concat(vectorl TSVECTOR, vector2 TSVECTOR) RETURNS TSVECTOR

Returns a vector which combines the lexemes and position information in the two vectors given as
arguments. Position weight labels (described in the previous paragraph) are retained intact during the
concatenation. This has at least two uses. First, if some sections of your document need be parsed
with different configurations than others, you can parse them separately and concatenate the resulting
vectors into one. Second, you can weight words from some sections of you document more heavily
than those from others by: parsing the sections into separate vectors; assigning the vectors different
position labels with thaetweight() function; concatenating them into a single vector; and then
providing a weights argument to thenk() function that assigns different weights to positions with
different labels.

length(vector TSVECTOR) RETURNS INT4

Returns the number of lexemes stored in the vector.

text “TSVECTOR RETURNS TSVECTOR

Directly castingext to atsvector allows you to directly inject lexemes into a vector, with what-
ever positions and position weights you choose to specify. The text should be formatted like the
vector would be printed by the output oS&LECT

tsearch(vector_column_name [, (my_filter_name | text_column_namel) [...]], text_column_nameN)

tsearch() trigger used to automatically update vector_column_namg filter name is
the function name to preprocessxt_column_name . There are can be many functions and

15

Chapter 2. FTS Operators and Functions

text columns specified itsearch() trigger. The following rule used: function applied to all
subsequent text columns until next function occurs. Example, fundtigratsymbol ~ replaces all
entries of@sign by space.

CREATE FUNCTION dropatsymbol(text) RETURNS text

AS ’select replace($1, "@”, ” ")}
LANGUAGE SQL,;

CREATE TRIGGER tsvectorupdate BEFORE UPDATE OR INSERT
ON tbIMessages FOR EACH ROW EXECUTE PROCEDURE
tsearch(tsvector_column,dropatsymbol, strMessage);

stat(sqlquery text [, weight text]) RETURNS SETOF statinfo

Herestatinfo is a type, defined as

CREATE TYPE statinfo as (word text, ndoc int4, nentry int4);
andsglquery is a query, which returns columsvector . This returns statistics (the number of
documents ndoc and total number nentry of word in the collection) about columntseetasr
Useful to check how good is your configuration and to find stop-words candidates.For example, find
top 10 most frequent words:

=# select * from stat('select vector from apod’) order by ndoc desc, nentry desc,word limit 10;
Optionally, one can specifyeight to obtain statistics about words with specifieight .

=# select * from stat('select vector from apod’,’a’) order by ndoc desc, nentry desc,word limit 10;

TSVECTOR < TSVECTOR
TSVECTOR <= TSVECTOR
TSVECTOR = TSVECTOR
TSVECTOR >= TSVECTOR
TSVECTOR > TSVECTOR

All btree operations defined fasvector type. tsvectors compares with each other usexico-
graphicalorder.

2.3. Query Operations

to_tsquery([configuration J querytext text) RETURNS TSQUERY

Acceptsquerytext , which should be a single tokens separated by the boolean opesaad|

or, and!' not, which can be grouped using parenthesis. In other wardsguery expects already
parsed text. Each token is reduced to a lexeme using the current or specified configuration. Weight
class can be assigned to each lexeme entry to restrict search regisenisgght for explanation),

for example

‘fata & rats’
to_tsquery function could accepgxt string . In this casejuerytext should be quoted. This
may be useful, for example, to use with thesaurus dictionary. In example below, thesaurus contains
rule supernovae stars : sn

"

=# select to_tsquery(
to_tsquery

supernovae stars” & Icrab’);

16

Chapter 2. FTS Operators and Functions

'sn’ & !'crab’
Without quoteso_tsquery will complain about syntax error.

plainto_tsquery([configuration J querytext text) RETURNS TSQUERY

Transforms unformatted texuerytext to tsquery . It is the same a®_tsquery , but accepts
text and will call parser to break it onto tokensainto_tsquery assumes. boolean operator
between words and doesn't recognizes weight classes.

querytree(query TSQUERY) RETURNS text

This returns a query which actually used in searching in index. It could be used to test for an empty
guery. Select below returns 'T’, which corresponds to empty query, since GIN index doesn’t supports
negate query and full index scan is very ineffective.

=# select querytree(to_tsquery('!defined’));
querytree

text mTSQUERY RETURNS TSQUERY

Directly castingext to atsquery allows you to directly inject lexemes into a query, with whatever
positions and position weight flags you choose to specify. The text should be formatted like the query
would be printed by the output of a SELECT.

numnode(query TSQUERY) RETURNS INTEGER

This returns the number of nodes in query tree. This function could be used to resqleeyif is
meaningful (returns- 0) , or contains only stop-words (returns 0).

=# select numnode(plainto_tsquery('the any’));

NOTICE: query contains only stopword(s) or doesn’'t contain lexeme(s),
ignored

numnode

=# select numnode(plainto_tsquery('the table’));
numnode

=# select numnode(plainto_tsquery(long table’));
numnode

TSQUERY && TSQUERY RETURNS TSQUERY
ReturnsaANGed TSQUERY

TSQUERY || TSQUERY RETURNS TSQUERY
ReturnsORed TSQUERY

17

Chapter 2. FTS Operators and Functions

II' TSQUERY RETURNS TSQUERY
negation of TSQUERY

TSQUERY < TSQUERY
TSQUERY <= TSQUERY

TSQUERY = TSQUERY

TSQUERY >= TSQUERY

TSQUERY > TSQUERY

All btree operations defined fasquery type. tsqueries compares with each other uséxiro-
graphicalorder.

2.3.1. Query rewriting

Query rewriting is a set of functions and operatorstfguery type. It allows to control search gtiery
timewithout reindexing (opposite to thesaurus), for example, expand search using synoeyms(k,
big apple, nyc, gotham) or narrow search directing user to some hot topic. Notice, that rewriting

rules can be added online.

rewrite() function changes original query by replacing part of the query by sample string of type
tsquery , as it defined by rewrite rule. Argumentsrefvrite() function can be column names of type
tsquery

CREATE TABLE aliases (t TSQUERY primary key, s TSQUERY);
INSERT INTO aliases values('a’, 'c’);

rewrite (query TSQUERY, target TSQUERY, sample TSQUERY) RETURNS TSQUERY

=# select rewrite(a & b'::TSQUERY, ’'a:TSQUERY, 'c'::TSQUERY);
rewrite

1b1 & ICI
rewrite (ARRAY[query TSQUERY, target TSQUERY, sample TSQUERY]) RETURNS TSQUERY

=# select rewrite(ARRAY['a & b'::TSQUERY, t,s]) from aliases;
rewrite

1b| & lcl
rewrite (query TSQUERY, select target ,sample from test’ itext) RETURNS TSQUERY

=# select rewrite(a & b':“TSQUERY, ’select t,s from aliases’);
rewrite

What if there are several variants of rewriting ? For example, que& b’ can be rewritten a% &
¢ and'cc’

=# select * from aliases;
t | s

18

Chapter 2. FTS Operators and Functions

___________ R
2 | ¢
" | 'z
'a’ & b | 'cc

This ambiguity can be resolved specifying sort order.

=# select rewrite(a & b’, 'select t,s from aliases order by t desc’);
rewrite

=# select rewrite(a & b’, 'select t,s from aliases order by t asc’);
rewrite

Let’s consider real-life astronomical example. We’'ll expand queepgrnovae using table-driven rewrit-
ing rules.

=# create table aliases (t tsquery primary key, s tsquery);

=# insert into aliases values(to_tsquery('supernovae’), to_tsquery(’supernovaelsn’));

=# select rewrite(to_tsquery('supernovae’), ’select * from aliases’) && to_tsquery(‘crab’);
?column?

('supernova’ | 'sn’) & ’crab’
Notice, that we can change rewriting rule online !

=# update aliases set s=to_tsquery('supernovae|sn&!nebulae’) where t=to_tsquery('supernovae’);
=# select rewrite(to_tsquery('supernovae’), ’select * from aliases’) && to_tsquery('crab’);
?column?

('supernova’ | 'sn’ & !'nebula’) & ’crab’

2.3.2. Operators for tsquery

Rewriting can be slow in case of many rewriting rules, since it checks every rule for possible hit. To filter
out obvious non-candidate rules there are containment operatesgdery type. In example below, we
select only those rules, which might contains in the original query.

=# select rewrite(ARRAY['a & b'::TSQUERY, t,s]) from aliases where 'a&b’ @> t;
rewrite

’b, & ICI

Two operators defined fagquery type:

19

Chapter 2. FTS Operators and Functions
TSQUERY @> TSQUERY
ReturnsTRUEiIf right agrument might contained in left argument.

TSQUERY <@ TSQUERY

ReturnsTRUEIf left agrument might contained in right argument.

2.3.3. Index for tsquery

To speed up operators®,@for tsquery one can use GiST index withquery_ops opclass.

create index t_idx on aliases using gist (t tsquery_ops);

2.4. Parser functions

CREATE FUNCTION parse(parser , document TEXT) RETURNS SETORokenout

Parses the givetiocument and returns a series of records, one for each token produced by parsing.
Each record includestakid giving its type and @aoken which gives its content.

postgres=# select * from parse('default’,’123 - a number’);

tokid | token
_______ I R

22 | 123

12

12 | -

1] a

12

1 | number

CREATE FUNCTION token_type(parser) RETURNS SETORFokentype

Returns a table which defines and describes each kind of tokeratte may produce as output.
For each token type the table gives thied which theparser will label eachtoken of that type,
thealias which names the token type, and a shigitcription for the user to read.

postgres=# select * from token_type('default’);

tokid | alias | description
1 | Iword | Latin word
2 | nlword | Non-latin word
3 | word | Word
4 | email | Email
5| url | URL
6 | host | Host
7 | sfloat | Scientific notation
8 | version | VERSION

20

Chapter 2. FTS Operators and Functions

9 | part_hword | Part of hyphenated word
10 | nlpart_hword | Non-latin part of hyphenated word
11 | Ipart_hword | Latin part of hyphenated word

12 | blank | Space symbols

13 | tag | HTML Tag

14 | protocol | Protocol head

15 | hword | Hyphenated word

16 | Ihword | Latin hyphenated word
17 | nlhword | Non-latin hyphenated word
18 | uri | URI

19 | file | File or path name

20 | float | Decimal notation

21 | int | Signed integer

22 | uint | Unsigned integer

23 | entity | HTML Entity

2.5. Ranking

Ranking attempts to measure how relevant documents are to particular queries by inspecting the number
of times each search word appears in the document, and whether different search terms occur near each
other. Note that this information is only available in unstripped vectors -- ranking functions will only
return a useful result for a tsvector which still has position information!

Notice, that ranking functions supplied are just an examples and doesn’t belong to the FTS core, you can
write your very own ranking function and/or combine additional factors to fit your specific interest.

The two ranking functions currently available are:

CREATE FUNCTION rank([weights float4][],] vector TSVECTOR, query TSQUERY, [normalization

This is the ranking function from the old version of OpenFTS, and offers the ability to weight word
instances more heavily depending on how you have classified them. The weights specify how heavily
to weight each category of word:

{D-weight, C-weight, B-weight, A-weight}
If no weights are provided, then these defaults are used:

{0.1, 0.2, 0.4, 1.0}
Often weights are used to mark words from special areas of the document, like the title or an initial
abstract, and make them more or less important than words in the document body.

CREATE FUNCTION rank_cd([weights float4[],] vector TSVECTOR, query TSQUERY, [normalizatic

This function computes theover densityanking for the given document vector and query, as de-
scribed in Clarke, Cormack, and Tudhope’s "Relevance Ranking for One to Three Term Queries" in
the 1999 Information Processing and Management.

Both of these ranking functions take an integermalization option that specifies whether a docu-
ment’s length should impact its rank. This is often desirable, since a hundred-word document with five
instances of a search word is probably more relevant than a thousand-word document with five instances.
The option can have the values, which could be combined ysffay example2|4) to take into account
several factors:

21

Chapter 2. FTS Operators and Functions

« 0 (the default) ignores document length.

- 1 divides the rank by the 1 + logarithm of the document length

« 2 divides the rank by the length itself.

- 4 divides the rank by the mean harmonic distance between extents

+ 8 divides the rank by the number of unique words in document

16 divides the rank by 1 + logarithm of the number of unique words in document

2.6. Headline

CREATE FUNCTION headline([id int4, | ts_name text,] document text, query TSQUERY, [optic

Every form of the théneadline() ~ function accepts a document along with a query, and returns one
or more ellipse-separated excerpts from the document in which terms from the query are highlighted.
The configuration with which to parse the document can be specified by eititeratss_name ; if

none is specified that the current configuration is used instead.

An options string if provided should be a comma-separated list of one or more 'option=value’ pairs.
The available options are:

« StartSel, StopSel -- the strings with which query words appearing in the document should be
delimited to distinguish them from other excerpted words.

« MaxWords, MinWords -- limits on the shortest and longest headlines you will accept.

« ShortWord -- this prevents your headline from beginning or ending with a word which has this many
characters or less. The default value of 3 should eliminate most English conjunctions and articles.

« HighlightAll -- boolean flag, ifTRUE than the whole document will be highlighted.

Any unspecified options receive these defaults:

StartSel= , StopSel= , MaxWords=35, MinWords=15, ShortWord=3, HighlightAll=FALSE

Notice, that cascade droppingtafadline function cause dropping @arser , used in fulltext configu-
rationtsname .

select headline(a b c’, 'c’:tsquery);
headline
ab c
=# select headline(a b c’, 'c’:tsquery, 'StartSel=<,StopSel=>’);
headline

22

Chapter 2. FTS Operators and Functions

2.7. Full-text indexes

There are two kinds of indexes which can be used to speedup FTS ope3atiioh 2.]). Notice, indexes
are not mandatory for FTS!

CREATE INDEXname ON table USING gist(column);

Creates GiST (The Generalized Search Tree) based index.

CREATE INDEXname ON table USING gin(column);

Creates GIN (The Generalized Inverted Index) based ind@xmn is one of theTSVECTORoOr
TEXT, or VARCHARypes.

GIiST index islossy , which means its’ required to constieap to check results for false hits. Post-
greSQL does this automaticallilter: in an example below.

=# explain select * from apod where fts @@ to_tsquery(’supernovae’);
QUERY PLAN

Index Scan using fts_gidx on apod (cost=0.00..12.29 rows=2 width=1469)
Index Cond: (fts @@ ™supernova™::tsquery)
Filter: (fts @@ ™supernova™::tsquery)

Lossiness is the result of two factors - we represent a document by its fixed-length signature. We obtain
signature in the following way - we hash (crc32) each word into random bit in a n-bit length strings and
their superposition produces n-bit document signature. Because of hashing, there is a chance, that some
words hashed to the same position and it could be resulted in false hit. Signatures, calculated for each
document in collection, are stored RD-tree (Russian Doll tree), invented by Hellerstein, which is an
adaptation of th&®-tree to sets. In our case transitive containment relation realized with superimposed
coding (Knuth,1973) of signatures - parent is 'OR’-ed bit-strings of all children. This is a second factor of
lossiness. It’s clear, that parents tend to be full of '1’ (degenerates) and become quite useless because of it’s
little selectivity. Searching performs as a bit comparison of a signature represented quen-aee

entry. If all '1’ of both signatures are in the same position we say that this branch probably contains
guery, but if there is even one discrepancy we could definitely reject this branch. Lossiness causes serious
performance degradation, since random accessihganf records is slow and limits applicability of GiST

index. Probability of false drops is depends on several factors and the number of unique words is one of
them, so using dictionaries to reduce this number is practically mandatory.

Actually, it's not the whole story. GIST index has optimization for storing small tsvectors (<
TOAST_INDEX_TARGEDytes, 512 bytes). On leaf pages small tsvectors stored as is, while longer one
are represented by their signatures, which introduce some losiness. Unfortunately, existing index API
doesn't allow to say index that it found an exact values (tsvector) or results need to be checked. That’s
why GiST index currently is marked as lossy. We hope in future to overcome this issue.

Contrary, GIN index isn't lossy and it's performance depends logarithmically on the number of unique
words.

There is one side-effect of "non-lossiness” of GIN index and using queries with lexemes and weights,
like 'supernovae:a’ . Since information about these labels storetiéap only and GIN index is not
lossy, there is no necessity to access heap, one should use special FTS ap@a@drich forces using

23

Chapter 2. FTS Operators and Functions

of heap to get information about labels. GiST index is lossy, so it réade anyway and there is no need
in special operator. In example beldig,_idx is a GIN index.

=# explain select * from apod where fts @@@ to_tsquery('supernovae:a’);
QUERY PLAN

Index Scan using fts_idx on apod (cost=0.00..12.30 rows=2 width=1469)
Index Cond: (fts @@@ ™supernova™A’::tsquery)
Filter: (fts @@@ "supernova’:A’:tsquery)

Experiments lead to the following observations:

- creation time - GiN takes 3x time to build than GiST

- size of index - GiN is 2-3 times bigger than GiST

- search time - GiN is 3 times faster than GiST

- update time - GiN is about 10 times slower than GiST

Overall, GiST index is very good for online update and fast for collections with the number of unique
words about 100,000, but is not as scalable as Gin index, which in turn isn’t good for updates. Both
indexes supportoncurrencyandrecovery

Partitioning of big collections and proper use of GiST and GIN indexes allow implementation of very
fast search with online update. Partitioning can be done on database level using table inheritance and
Constraint Exclusion, or distributing documents over servers and collecting search results using
contrib/dblink extension module. The latter is possible, because ranking functions use only local
information.

2.8. Dictionaries

CREATE FUNCTION lexize([oid , | dict name text, lexeme text) RETURNS text[]]

Returns an array of lexemes if inpiekeme is known to the dictionargictname , or void array if
a lexeme is known to the dictionary, but it is a stop-wordy\oi_L if it is unknown word.

=# select lexize('en_stem’, ’'stars’);
lexize
{star}
=# select lexize('en_stem’,
lexize

)

a);

Note: lexize function expects lexeme , not text ! Below is a didactical example:

apod=# select lexize('tz_astro’,’'supernovae stars’) is null;
?column?

24

Chapter 2. FTS Operators and Functions

Thesaurus dictionary tz_astro does know what is a supernovae stars , but lexize fails, since it does
not parse input text and considers it as a single lexeme. Use plainto_tsquery, to_tsvector to test
thesaurus dictionaries.

apod=# select plainto_tsquery('supernovae stars’);
plainto_tsquery

There are several predefined dictionaries and templates. Templates used to create new dictionaries overrid-
ing default values of parameters. FTS ReferdPad |contains description of SQL comman@REATE
FULLTEXT DICTIONARY, DROP FULLTEXT DICTIONARY, ALTER FULLTEXT DICTIONARY)

for managing of dictionaries.

2.8.1. Simple dictionary

This dictionary returns lowercased input wordNWLL if it is a stop-word. Example of how to specify
location of file with stop-words.

=# CREATE FULLTEXT DICTIONARY public.my_simple
OPTION ’english.stop’
LIKE pg_catalog.simple;

Relative paths i©OPTIONresolved respective ttPGROOT/share. Now we could test our dictionary:

=# select lexize('public.my_simple’,’YeS’);
lexize

{yes}
=# select lexize('public.my_simple’, The’);
lexize

2.8.2. Ispell dictionary

Ispell template dictionary for FTS allows creation of morphological dictionaries, based or,|sgédh
has support for a large number of languages. This dictionary try to reduce an input word to its infinitive

1. http://fficus-www.cs.ucla.edu/geoff/ispell.html

25

Chapter 2. FTS Operators and Functions

form. Also, more modern spelling dictionaries are supported - My5(@20 < 2.0.1) and Hunspél{OO
>=2.0.2). A big list of dictionaries is available on OpenOffice Wiki

Ispell dictionary allow search without bothering about different linguistic forms of a word. For example, a
search omank would return hits to all declensions and conjugations of the searchbtarkn- banking,
banked, banks, banks’ and bank’s etc.

=# select lexize('en_ispell’,’banking’);
lexize
{bank}
=# select lexize('en_ispell’,’bank’s’);
lexize
{bank}
=# select lexize('en_ispell’,’banked’);
lexize

To create ispell dictionary one should use builtispell_template dictionary and specify several
parameters.

CREATE FULLTEXT DICTIONARY en_ispell

OPTION 'DictFile="/usr/local/share/dicts/ispell/english.dict",
AffFile="/usr/local/share/dicts/ispell/english.aff",
StopFile="/usr/local/share/dicts/ispell/english.stop

LIKE ispell_template;

Here,DictFile, AffFile, StopFile are location of dictionary files and file with stop words.

Relative paths iDPTIONresolved respective t8PGROOT/share/dicts_data

CREATE FULLTEXT DICTIONARY en_ispell

OPTION 'DictFile="ispell/english.dict",
AffFile="ispell/english.aff",
StopFile="english.stop"™

LIKE ispell_template;

Ispell dictionary usually recognizes a restricted set of words, so it should be used in conjunction with
another "broader" dictionary, for example, stemming dictionary, which recognizes "everything".

Ispell dictionary has support for splitting compound words based on an ispell dictionary. This is a nice
feature and FTS in PostgreSQL supports it. Notice, that affix file should specify special flag with the
compoundwords controlled statement, which used in dictionary to mark words participated in com-
pound formation.

compoundwords controlled z

2. http://len.wikipedia.org/wiki/MySpell
3. http://sourceforge.net/projects/hunspell
4. http://wiki.services.openoffice.org/wiki/Dictionaries

26

Chapter 2. FTS Operators and Functions

Several examples for Norwegian language:

=# select lexize('norwegian_ispell’,’overbuljongterningpakkmesterassistent’);
{over,buljong,terning,pakk,mester,assistent}

=# select lexize('norwegian_ispell’,’sjokoladefabrikk’);
{sjokoladefabrikk,sjokolade,fabrikk}

Note: MySpell doesn’t supports compound words, Hunspell has sophisticated support of compound
words. At present, FTS implements only basic compound word operations of Hunspell.

2.8.3. Snowball stemming dictionary

Snowball template dictionary is based on the project of Martin Porter, an inventor of popular Porter’s
stemming algorithm for English language, and now supported many languages (see Snowlal site
more information). FTS contains a large number of stemmers for many languages. The only option, which
accepts snowball stemmer is a location of a file with stop words. It can be defined\usieg FULLTEXT
DICTIONARY command.

ALTER FULLTEXT DICTIONARY en_stem
OPTION ’/usr/local/share/dicts/ispell/english-utf8.stop’;

Relative paths iOPTIONresolved respective 8SPGROOT/share/dicts/data

ALTER FULLTEXT DICTIONARY en_stem OPTION ’english.stop’;

Snowball dictionary recognizes everything, so the best practice of usage is to place it at the end of the
dictionary stack. It it uselessness to have it before any dictionary, because a lexeme will not pass through
a stemmer.

2.8.4. Synonym dictionary

This dictionary template is used to create dictionaries which replaces one word by synonym word. Phrases
are not supported, use thesaurus diction&sacfion 2.8.5if you need them. Synonym dictionary can be

used to overcome linguistic problems, for example, to avoid reducing of word 'Paris’ by a english stemmer
dictionary to 'pari’. In that case, it's enough to ha®eris paris line in synonym dictionary and put it
before en_stemm dictionary.

=# select * from ts_debug(’english’,'Paris’);
Alias | Description | Token | Dicts list Lexized token
+ + + +

5. http://snowball.tartarus.net

27

Chapter 2. FTS Operators and Functions

lword | Latin word | Paris | {pg_catalog.en_stem} | pg_catalog.en_stem: {pari}
(2 row)

=# alter fulltext mapping on english for Ilword with synonym,en_stem;

ALTER FULLTEXT MAPPING

Time: 340.867 ms

postgres=# select * from ts_debug(’english’,’Paris’);

Alias | Description | Token | Dicts list | Lexized token
+ + + +

lword | Latin word | Paris | {pg_catalog.synonym,pg_catalog.en_stem} | pg_catalog.synonym: {paris}

1 row)

2.8.5. Thesaurus dictionary

Thesaurus - is a collection of words with included information about the relationships of words and
phrases, i.e., broader terms (BT), narrower terms (NT), preferred terms, non-preferred, related terms,etc.

Basically,thesaurus dictionary replaces all non-preferred terms by one preferred term and, optionally, pre-
serves them for indexing. Thesaurus used when indexing, so any changes in thesspuireseindexing

Current realization of thesaurus dictionary (TZ) is an extension of synonym dictionarphitisesup-

port. Thesaurus is a plain file of the following format:

this is a comment
sample word(s) : indexed word(s)

where colon{) symbol is a delimiter.

TZ usessubdictionary(should be defined FTS configuration) to normalize thesaurus text. It's possible to
define only one dictionary. Notice, thatibdictionaryproduces an error, if it couldn’t recognize word. In
that case, you should remove definition line with this word or tesaidictionaryto know it. Use asterisk

(*) at the beginning of indexed word to skip subdictionary. It's still required, that sample words should be
known.

Thesaurus dictionary looks for the most longest match.

Stop-words recognized by subdictionary replaced by 'stop-word placeholder’, i.e., important only their
position. To break possible ties thesaurus applies the last definition. To illustrate this, consider thesaurus
(with simple subdictionary) rules with pattern 'swsw, where 's’ designates any stop-word and 'w’ - any
known word:

a one the two : swsw
the one a two : swsw2

Words 'a’ and 'the’ are stop-words defined in the configuration of a subdictionary. Thesaurus considers
texts'the one the two’ and'that one then two’ as equal and will use definition 'swsw2’.

As a normal dictionary, it should be assigned to the specific lexeme types. Since TZ has a capability
to recognize phrases it must remember its state and interact with parser. TZ use these assignments to
check if it should handle next word or stop accumulation. Compiler of TZ should take care about proper

28

Chapter 2. FTS Operators and Functions

configuration to avoid confusion. For example, if TZ is assigned to handlelwoly lexeme, then TZ
definition like " one 1:11" will not works, since lexeme tyggit doesn’t assigned to the TZ.

2.8.5.1. Thesaurus configuration

To define new thesaurus dictionary one can use thesaurus template, for example:

CREATE FULLTEXT DICTIONARY tz_simple
OPTION 'DictFile="dicts_data/thesaurus.txt.sample", Dictionary="en_stem"
LIKE thesaurus_template;

Here:

« tz_simple - isthe thesaurus dictionary name

« DictFile="/path/to/tz_simple.txt" - is the location of thesaurus file

- Dictionary="en_stem" defines dictionary (snowball english stemmer) to use for thesaurus normal-
ization. Notice, that en_stem dictionary has it's own configuration (stop-words, for example).

Now, it's possible to bind thesaurus dictionarysimple and selectetbkens , for example:

ALTER FULLTEXT MAPPING ON russian_utf8 FOR Iword,lhword,lpart_hword WITH tz_simple;

2.8.5.2. Thesaurus examples

Let's consider simple astronomical thesaurtusastro , which contains some astronomical
word-combinations:

supernovae stars : sn
crab nebulae : crab

Below, we create dictionary and bind some types of tokens with astronomical thesaurus and english stem-
mmer.

=# CREATE FULLTEXT DICTIONARY tz_astro OPTION
'DictFile="dicts_data/tz_astro.txt", Dictionary="en_stem"
LIKE thesaurus_template;

=# ALTER FULLTEXT MAPPING ON russian_utf8 FOR Iword,lhword,lpart_hword
WITH tz_astro,en_stem;

Now, we could see how it works. Notice, thatize couldn’t use for testing (see description®fize)
thesaurus, so we could upkinto_tsquery andto_tsvector functions, which accepext argu-
ment, not dexeme .

=# select plainto_tsquery('supernova star’);

plainto_tsquery

29

Chapter 2. FTS Operators and Functions

sn
=# select to_tsvector('supernova star’);
to_tsvector

In principle, one can us®_tsquery if quote argument.

"

=# select to_tsquery(
to_tsquery

supernova star”);

Notice, thatsupernova star matchessupernovae stars in tz_astro , because we specified
en_stem stemmer in thesaurus definition.

To keep an original phrase in full-text index just add it to the right part of definition:

supernovae stars : sn supernovae stars

=# select plainto_tsquery('supernova star’);
plainto_tsquery

'sn’ & ’'supernova’ & ’star’

2.9. FTS Configuration

A FTS configuration specifies all of the equipment necessary to transform a documentsirdata

the parser that breaks its text into tokens, and the dictionaries, which then transform each token into a
lexeme. Every call tao_tsvector() , to_tsquery() uses a configuration to perform its processing.
Default FTS configurations contain in 4 tables fpy_catalog schema, namelypg ts_cfg
pg_ts_parser ,pg_ts_dict ,pg_ts_cfgmap

To facilitate management of FTS objects a set of SQL commands, described in FTS ReRagricis
available. This is a recommended way.

Predefined system FTS objects are availablmirtatalog schema. If you need a custom configuration
you can create a new FTS object and modify it using SQL commands, described in FTS ReRergnce
I. For example, to customize parser, create full-text configuration and change the valueeaR$ER
parameter.

=# CREATE FULLTEXT CONFIGURATION public.testcfg LIKE russian_utf8 WITH MAP;
=# ALTER FULLTEXT CONFIGURATION public.testcfg SET PARSER htmliparser;

New FTS objects created in the current schema on default, usualblit schema, but schema-
qualified name could be used to create object in the specified schema. It owned by the current user and can
be changed usingLTER FULLTEXT ... OWNERSQL command. Visibility of FTS objects conforms to

the standard PostgreSQL rule and defineddaych_path variable, see example ALTER FULLTEXT

30

Chapter 2. FTS Operators and Functions

... OWNER By default, the first visible schema is thg_catalog , so that system FTS objects always
mask users. To change that, explicitly speqifiy catalog in thesearch_path variable.

GUC variablessearch_conf_name (optionally schema-qualified) defines the name ofdiineent active
configuration. It can be defined postgresgl.conf or using SQL command.

Notice, thatpg_catalog schema, if not explicitly specified in theearch_path , implicitly placed as
the first schema to browse.

=# alter fulltext configuration public.russian_utf8 SET AS DEFAULT;
ALTER FULLTEXT CONFIGURATION

=# \dF *.russ*utf8
List of fulltext configurations

Schema | Name | Locale | Default | Description
+ + + +
pg_catalog | russian_utf8 | ru_RU.UTF-8 | Y | default configuration for Russian/UTF-8
public | russian_utf8 | ru_ RU.UTF-8 | Y |
(2 rows)

=# show tsearch_conf name;
tsearch_conf_name

pg_catalog.russian_utf8
1 row)

=# set search_path=public, pg_catalog;

SET

=# show tsearch_conf_name;
tsearch_conf_name

public.russian_utf8

There are several psgl commands, which display various information about FTS oSptisr 2.1}

2.10. Debugging
Functionts_debug allows easy testing your full-text configuration.

ts_debug([cfgname | oid], document TEXT) RETURNS SETOF tsdebug
It displays information about every token fratacument as they produced by a parser and processed by
dictionaries as it was defined in configuration, specifiedfjgame or oid .

tsdebug type defined as
CREATE TYPE tsdebug AS (
"Alias" text,

"Description" text,
"Token" text,

31

Chapter 2. FTS Operators and Functions

"Dicts list" text[],
"Lexized token" text

For demonstration of how functiaa_debug works we first creatpublic.english configuration and

ispell dictionary for english language. You may skip test step and play with staadglish configura-
tion.

CREATE FULLTEXT CONFIGURATION public.english LIKE pg_catalog.english WITH MAP AS DEFAULT;

CREATE FULLTEXT DICTIONARY en_ispell

OPTION ’DictFile="/usr/local/share/dicts/ispell/english-utf8.dict",
AffFile="/usr/local/share/dicts/ispell/english-utf8.aff",
StopFile="/usr/local/share/dicts/english.stop™

LIKE ispell_template;

ALTER FULLTEXT MAPPING ON public.english FOR Iword WITH en_ispell,en_stem;

=# select * from ts_debug(’public.english’, The Brightest supernovaes’);

Alias | Description | Token | Dicts list | Lexized tok
lword | Latin word | The | {public.en_ispell,pg_catalog.en_stem} | public.en_ispell: {}

blank | Space symbols | | |

lword | Latin word | Brightest | {public.en_ispell,pg_catalog.en_stem} | public.en_ispell: {bright}

blank | Space symbols | | |

lword | Latin word | supernovaes | {public.en_ispell,pg_catalog.en_stem} | pg_catalog.en_stem: {supernov
(5 rows)

In this example, the word 'Brightest’ was recognized by a parserlagi@m word (aliaslword) and

came through a dictionariepublic.en_ispell,pg_catalog.en_stem . It was recognized by
public.en_ispell , which reduced it to the noubright . Word supernovaes is unknown for
public.en_ispell dictionary, so it was passed to the next dictionary, and, fortunately, was recognized

(in fact, public.en_stem is a stemming dictionary and recognizes everything, that is why it placed at
the end the dictionary stack).

The wordThe was recognized byublic.en_ispell dictionary as a stop-wordsgction 1.3.pand will
not indexed.

You can always explicitly specify what columns you want to see

=# select "Alias", "Token", "Lexized token"
from ts_debug(’public.english’,'The Brightest supernovaes’);

Alias | Token | Lexized token
+ +
lword | The | public.en_ispell: {}
blank | |
Iword | Brightest | public.en_ispell: {bright}
blank | |
Iword | supernovaes | pg_catalog.en_stem: {supernova}
(5 rows)

32

Chapter 2. FTS Operators and Functions

2.11. Psqgl support
Information about FTS objects can be obtaineddgl using a set of commands
\dF{,d,p}[+] [PATTERN]

Optional+ used to produce more details.

Optional parametePATTERNiS a name (can be schema-qualified) of the FTS obje®ATTERNIS not
specified, then information abodefault object (configuration, parser, dictionaries) will be displayed.
Visibility of FTS objects conforms PostgreSQL ruATTERNcan be a regular expression and should
applyseparatelyto schema name and object name. Following examples illustrate this.

=# \dF *fts*
List of fulltext configurations
Schema | Name | Locale | Description
+ + +

public | fts_cfg | ru_RU.UTF-8 |

=# \dF *.fts*
List of fulltext configurations
Schema | Name | Locale | Description
fts | fts_cfg | ru_ RU.UTF-8 |
public | fts_cfg | ru_RU.UTF-8 |

\dF[+] [PATTERN]
List full-text configurations (add "+" for more detail)

By default (withoutPATTERN, information about allvisible full-text configurations will be dis-
played.

=# \dF russian_utf8
List of fulltext configurations
Schema | Name | Locale | Default | Description

+ + + +

pg_catalog | russian_utf8 | ru_RU.UTF-8 | Y | default configuration for Russian/UTF-8

=# \dF+ russian_utf8

Configuration "pg_catalog.russian_utf8"
Parser name: "pg_catalog.default"
Locale: 'ru_RU.UTF-8' (default)

Token [Dictionaries
+

email | pg_catalog.simple
file | pg_catalog.simple
float | pg_catalog.simple
host | pg_catalog.simple
hword | pg_catalog.ru_stem_utf8
int | pg_catalog.simple
Ihword | public.tz_simple

Ipart_hword | public.tz_simple

33

Iword
nlhword

Chapter 2. FTS Operators and Functions

| public.tz_simple
| pg_catalog.ru_stem_utf8

nlpart_hword | pg_catalog.ru_stem_utf8

niword

part_hword

sfloat
uint

uri

url
version
word

\dFd[+] [PATTERN]

| pg_catalog.ru_stem_utf8
| pg_catalog.simple
| pg_catalog.simple

| pg_catalog.simple

| pg_catalog.simple

| pg_catalog.simple

| pg_catalog.simple

| pg_catalog.ru_stem_utf8

List full-text dictionaries (add "+" for more detail).

By default (withoutPATTERYN, information about alVisibledictionaries will be displayed.

postgres=# \dFd

List of fulltext dictionaries
| Description

| simple dictionary: just lower case and check for stopword

| synonym dictionary: replace word by its synonym

Schema | Name
pg_catalog | danish_iso_8859 1 | Snowball stemmer
pg_catalog | danish_utf 8 | Snowball stemmer
pg_catalog | dutch_iso_8859_1 | Snowball stemmer
pg_catalog | dutch_utf 8 | Snowball stemmer
pg_catalog | en_stem | English stemmer. Snowball.
pg_catalog | finnish_iso_8859 1 | Snowball stemmer
pg_catalog | finnish_utf_8 | Snowball stemmer
pg_catalog | french_iso_8859 1 | Snowball stemmer
pg_catalog | french_utf_8 | Snowball stemmer
pg_catalog | german_iso_8859 1 | Snowball stemmer
pg_catalog | german_utf 8 | Snowball stemmer
pg_catalog | hungarian_iso_8859_1 | Snowball stemmer
pg_catalog | hungarian_utf 8 | Snowball stemmer
pg_catalog | ispell_template | Ispell dictionary template
pg_catalog | italian_iso_8859 1 | Snowball stemmer
pg_catalog | italian_utf 8 | Snowball stemmer
pg_catalog | norwegian_iso_8859 1 | Snowball stemmer
pg_catalog | norwegian_utf_8 | Snowball stemmer
pg_catalog | portuguese_iso_8859_1 | Snowball stemmer
pg_catalog | portuguese_utf_8 | Snowball stemmer
pg_catalog | ru_stem_koi8 | KOI-8 russian stemmer. Snowball.
pg_catalog | ru_stem_utf8 | UTF-8 russian stemmer. Snowball.
pg_catalog | ru_stem_win1251 | WIN1251 russian stemmer. Snowball.
pg_catalog | simple
pg_catalog | spanish_iso_8859 1 | Snowball stemmer
pg_catalog | spanish_utf 8 | Snowball stemmer
pg_catalog | synonym
pg_catalog | thesaurus_template

| Thesaurus template. Phrase by phrase substitution

34

Chapter 2. FTS Operators and Functions

\dFp[+] [PATTERN]
List full-text parsers (add "+" for more detail)

By default (withoutPATTERN, information about alVisiblefull-text parsers will be displayed.

postgres=# \dFp
List of fulltext parsers

Schema | Name | Description
+ +
pg_catalog | default | default word parser
(1 row)

postgres=# \dFp+
Fulltext parser "pg_catalog.default”

Method | Function | Description
Start parse | pg_catalog.prsd_start |
Get next token | pg_catalog.prsd_nexttoken |
End parse | pg_catalog.prsd_end [
Get headline | pg_catalog.prsd_headline |

Get lexeme’s type | pg_catalog.prsd_lextype |

Token’s types for parser "pg_catalog.default”

Token name | Description
+
blank | Space symbols
email | Email
entity | HTML Entity
file | File or path name
float | Decimal notation
host | Host
hword | Hyphenated word
int | Signed integer
Ihword | Latin hyphenated word
Ipart_hword | Latin part of hyphenated word
Iword | Latin word
nlhword | Non-latin hyphenated word
nipart_hword | Non-latin part of hyphenated word
nlword | Non-latin word
part_hword | Part of hyphenated word
protocol | Protocol head
sfloat | Scientific notation
tag | HTML Tag
uint | Unsigned integer
uri | URI
url | URL
version | VERSION
word | Word
(23 rows)

35

. FTS Reference

. SQOL Commands

This part contains reference information for the SQL commands related to the full-text search (FTS),
supported by PostgreSQL.

CREATE FULLTEXT CONFIGURATION

Name
CREATE FULLTEXT CONFIGURATIGN create full-text configuration

Synopsis

CREATE FULLTEXT CONFIGURATIObBfgname
PARSER prsname [LOCALE localename]
[AS DEFAULT];

CREATE FULLTEXT CONFIGURATIORNgname

[{ PARSER prsname | LOCALE localename ||
LIKE template_cfg [WITH MAP]

[AS DEFAULT];

Description

CREATE FULLTEXT CONFIGURATIONIll create a new FTS configuration. The new configuration will
be owned by the user issuing the command.

If a schema name is given (for exampleREATE FULLTEXT CONFIGURATIOMyschema.cfgname
) then the configuration is created in the specified schema. Otherwise it is created in the current
schema.

Parameters

cfgname

The name (optionally schema-qualified) of the full-text configuration to be created.
PARSER

psrname is the name (optionally schema-qualified) of the parser.
LOCALE

localename is the name of the locale. It should match server’s lodaletype) to identify full-
text configuration used by default.

LIKE

Existing full-text configurationemplate_cfg (optionally schema-qualified) will be used to create
new configuration. Values ¢fARSER, LOCALEparameters, if defined, will substitute default values
of the template configuration.

CREATE FULLTEXT CONFIGURATION

WITH MAP

If specified, then full-text mapping of template configuration is copied to the new configuration.
AS DEFAULT

Setdefault flag for the configuration, which used to identify if this configuration is selectable on
default (seecOCALEdescription above). It is possible to haveximum oneonfiguration with the
same locale and in the same schema with this flag enabled.

Examples
Create new configuratiolest with default parser andi_RU.UTF-8 locale.

=# CREATE FULLTEXT CONFIGURATION test PARSER default LOCALE 'ru_RU.UTF-8;
=# \dF+ test

Configuration "public.test"

Parser name: "pg_catalog.default"

Locale: 'ru_RU.UTF-8’

Token | Dictionaries

_______ e —————

Now we create configuration usingnglish configuration (parser and full-text mapping) but with
ru_RU.UTF-8 locale.

=# CREATE FULLTEXT CONFIGURATION test LOCALE ’ru_RU.UTF-8 LIKE english WITH MAP;
CREATE FULLTEXT CONFIGURATION

=# \dF+ test

Configuration "public.test"

Parser name: "pg_catalog.default"

Locale: 'ru_RU.UTF-8

Token | Dictionaries
email | pg_catalog.simple
file | pg_catalog.simple
float | pg_catalog.simple
host | pg_catalog.simple
hword | pg_catalog.simple
int | pg_catalog.simple
Ihword | pg_catalog.en_stem
Ipart_hword | pg_catalog.en_stem
Iword | pg_catalog.en_stem
nlhword | pg_catalog.simple
nlpart_hword | pg_catalog.simple
nlword | pg_catalog.simple
part_hword | pg_catalog.simple
sfloat | pg_catalog.simple
uint | pg_catalog.simple
uri | pg_catalog.simple
url | pg_catalog.simple
version | pg_catalog.simple

CREATE FULLTEXT CONFIGURATION

word | pg_catalog.simple

Inthe example below we first creatat configuration (ipublic schema by default) withefault ~ flag
enabled using system configuratipg catalog.russian_utf8 as template. Then, we create another
configuration with the same parameters as earlier and showldfmait flag was removed frorest
configuration.

=# CREATE FULLTEXT CONFIGURATION test LIKE pg_catalog.russian_utf8 AS DEFAULT,;
CREATE FULLTEXT CONFIGURATION
=# \dF public.test
List of fulltext configurations

Schema | Name | Locale | Default | Description
-------- L — + +
public | test | ru_ RU.UTF-8 | Y |
=# CREATE FULLTEXT CONFIGURATION test2 LIKE pg_catalog.russian_utf8 AS DEFAULT;
NOTICE: drop default flag for fulltext configuration "public.test"
=# \dF public.test*

List of fulltext configurations
Schema | Name | Locale | Default | Description

+ + + +
public | test | ru_RU.UTF-8 | |
public | test2 | ru_ RU.UTF-8 | Y |
=# ALTER FULLTEXT CONFIGURATION test2 DROP DEFAULT;
ALTER FULLTEXT CONFIGURATION
=# \dF public.test*

List of fulltext configurations

Schema | Name | Locale | Default | Description

public | test | ru_RU.UTF-8 | |
public | test2 | ru_RU.UTF-8 | |

See Also
DROP FULLTEXT CONFIGURATIOMLTER FULLTEXT CONFIGURATION

DROP FULLTEXT CONFIGURATION

Name
DROP FULLTEXT CONFIGURATIOGN remove a full-text configuration

Synopsis

DROP FULLTEXT CONFIGURATION [IF EXISTStfgname [CASCADE | RESTRICT J;

Description

DROP FULLTEXT CONFIGURATIOMRmMoves full-text configuration from the database. Only its owner
may destroy a configuration.

To drop a configuration and all FTS objects, which depends @ABCADENnust be specified.

Parameters

IF EXISTS
Do not throw an error if the configuration does not exist. A notice is issued in this case.
cfgname
The name (optionally schema-qualified) of the configuration to drop.
CASCADE
Automatically drop FTS objects that depend on the configuration
RESTRICT

Refuse to drop the configuration if any objects depend on it. This is the default.

See Also
CREATE FULLTEXT CONFIGURATION

ALTER FULLTEXT CONFIGURATION

Name
ALTER FULLTEXT CONFIGURATION- change a full-text configuration

Synopsis
ALTER FULLTEXT CONFIGURATIONfgname RENAME Tnhewcfgname ;
ALTER FULLTEXT CONFIGURATIONfgname SET { LOCALE localename | PARSER prsname } [, ...];

ALTER FULLTEXT CONFIGURATIONfgname { SET AS | DROP } DEFAULT;

Description

ALTER FULLTEXT CONFIGURATIOShanges an existing full-text configuration.

Parameters

cfgname
The name (optionally schema-qualified) of the configuration to rename.
RENAME TO
newcfgname is the new name of the configuration. Notice, that schema cannot be changed.
SET
Values ofLOCALE, PARSERparameters, if defined, will substitute current values.
SET AS DEFAULT
Setdefault flag for the configuration.
DROP DEFAULT

Removedefault flag for the configuration.

Examples

There are could be maximum one configuration ViidFAULTflag defined in the same schema and with
the same locale.

=# \dF public.test*
List of fulltext configurations

Schema | Name | Locale | Default | Description
+ + + +

ALTER FULLTEXT CONFIGURATION

public | test | ru_RU.UTF-8 | |
public | test2 | ru RU.UTF-8 | Y |
=# ALTER FULLTEXT CONFIGURATION test2 DROP DEFAULT;
ALTER FULLTEXT CONFIGURATION
=# \dF public.test*
List of fulltext configurations
Schema | Name | Locale | Default | Description
+ + + +
public | test | ru_RU.UTF-8 | |
public | test2 | ru_RU.UTF-8 | |
=# ALTER FULLTEXT CONFIGURATION test2 SET AS DEFAULT;
ALTER FULLTEXT CONFIGURATION
Time: 1.629 ms
postgres=# \dF public.test*
List of fulltext configurations
Schema | Name | Locale | Default | Description
+ + + +
public | test | ru_RU.UTF-8 | |
public | test2 | ru_ RU.UTF-8 | Y |

See Also
CREATE FULLTEXT CONFIGURATION

CREATE FULLTEXT DICTIONARY

Name
CREATE FULLTEXT DICTIONARY- create a dictionary for full-text search

Synopsis

CREATE FULLTEXT DICTIONARYdictname
LEXIZE lexize_function
[INIT init_function]
[OPTION opt_text]

CREATE FULLTEXT DICTIONARYdictname
[{ INIT init_function
| LEXIZE lexize_function
| OPTION opt_text }
[...]]1 LIKE template_dictname

Description

CREATE FULLTEXT DICTIONARWiIll create a new dictionary used to transform input word to a lexeme.

If a schema name is given (for exampEREATE FULLTEXT DICTIONARYmyschema.dictname ...)
then the dictionary is created in the specified schema. Otherwise it is created in the current schema.

Parameters

dictname

The name (optionally schema-qualified) of the new dictionary.

LEXIZE

lexize_function is the name of the function, which does transformation of input word.
INIT

init_function is the name of the function, which initialize dictionary.
OPTION

opt_text is the meaning of thept_text varies among dictionaries. Usually, it stores various
options required for the dictionary, for example, location of stop words file. Relative paths are defined
with regard toPGROOT/share/dicts_data directory.

CREATE FULLTEXT DICTIONARY

LIKE

template_dictname is the name (optionally schema-qualified) of existing full-text dictionary used
as a template. Values @flIT, LEXIZE, OPTION parameters, if defined, will substitute default
values of the template dictionary.

Examples

Create dictionarypublic.my_simple in public schema, which uses functions defined for system
pg_catalog.simple dictionary. We specify location of stop-word file.

=# CREATE FULLTEXT DICTIONARY public.my_simple LEXIZE dsimple_lexize INIT dsimple_init OPTION
=# select lexize('public.my_simple’,’YeS’);

lexize

{yes}

=# select lexize('public.my_simple’, The’);

lexize

This could be done easier using template.

=# CREATE FULLTEXT DICTIONARY public.my_simple OPTION '/usr/local/share/dicts/english.stop’ LIKE pg_
=# select lexize('public.my_simple’,’YeS’);
lexize

{yes}
=# select lexize('public.my_simple’,'The’);
lexize

See Also
DROP FULLTEXT DICTIONARYALTER FULLTEXT DICTIONARY

10

DROP FULLTEXT DICTIONARY

Name

DROP FULLTEXT DICTIONARY-remove a full-text dictionary

Synopsis

DROP FULLTEXT DICTIONARY [IF EXISTS]dictname [CASCADE | RESTRICT J;

Description

DROP FULLTEXT DICTIONARYemoves full-text dictionary from the database. Only its owner may de-
stroy a configuration.

To drop a dictionary and all FTS objects, which depends adbASCADENust be specified.

Parameters

IF EXISTS
Do not throw an error if the dictionary does not exist. A notice is issued in this case.
dictname
The name (optionally schema-qualified) of the dictionary to drop.
CASCADE
Automatically drop FTS objects that depend on the dictionary.
RESTRICT

Refuse to drop the dictionary if any objects depend on it. This is the default.

See Also
CREATE FULLTEXT DICTIONARY

11

ALTER FULLTEXT DICTIONARY

Name
ALTER FULLTEXT DICTIONARY— change a full-text dictionary

Synopsis
ALTER FULLTEXT DICTIONARYdictname RENAME Thewdictname ;

ALTER FULLTEXT DICTIONARYdictname SET OPTION opt_text

Description

ALTER FULLTEXT DICTIONARYhange an existing full-text dictionary.

Parameters

dictname

The name (optionally schema-qualified) of the dictionary to rename.
newdictname

The new name of the dictionary. Notice, that schema cannot be changed.
SET OPTION

Define a new valuept_text of the existing full-text dictionary.

See Also
CREATE FULLTEXT DICTIONARY

12

CREATE FULLTEXT MAPPING

Name
CREATE FULLTEXT MAPPING- binds tokens and dictionaries

Synopsis

CREATE FULLTEXT MAPPING Odlgname FOR tokentypename [, ...] WITH dictnamel [, ...];

Description

CREATE FULLTEXT MAPPINGInd token of typdexemetypename and full-text dictionaries in given
configurationcfgname . The order of dictionaries is important, since lexeme processtztorder.

Parameters

cfgname

The name (optionally schema-qualified) of the full-text configuration.
FOR

tokentypename is the type of token full-text mapping created for.
WITH

dictnamel is the name of full-text dictionary, which binds to ttuéentypename

Examples

In example below, we first createstcfg full-text configuration and then create mapping for token of
typeslword,lhword,Ipart_hword

=# CREATE FULLTEXT CONFIGURATION testcfg LOCALE ‘testlocale’ LIKE russian_utf8;
CREATE FULLTEXT CONFIGURATION
=# CREATE FULLTEXT MAPPING ON testcfg FOR Iword,lhword,lpart_hword WITH simple,en_stem;
CREATE FULLTEXT MAPPING
=# \dF+ testcfg
Configuration 'testcfg’
Parser name: 'default’
Locale: 'testlocale’
Token | Dictionaries

+
T

Ihword | simple,en_stem

13

CREATE FULLTEXT MAPPING

Ipart_hword | simple,en_stem
Iword | simple,en_stem

See Also
ALTER FULLTEXT MAPPING

14

ALTER FULLTEXT MAPPING

Name
ALTER FULLTEXT MAPPING- change token binding with FTS dictionaries

Synopsis

ALTER FULLTEXT MAPPING OMNfgname FOR tokentypename [, ...] WITH dictnamel [, ...];
ALTER FULLTEXT MAPPING ONfgname [FOR tokentypename [, ..]] REPLACE olddictname TO newdict

Description

ALTER FULLTEXT MAPPINGhange binding of token ofokentypename or create one if binding
doesn't exists.

Parameters

cfgname

The name (optionally schema-qualified) of the full-text configuration.
FOR

tokentypename is the type of token full-text mapping created for.
WITH

dictnamel is the name of full-text dictionary, which binds to ttuéentypename
REPLACE

olddictname is the name of full-text dictionary to be replaced byeavdictname .
TO

newdictname is the name of full-text dictionary, which replacelddictname

Examples

=# ALTER FULLTEXT MAPPING ON testcfg FOR Iword WITH simple;

ALTER FULLTEXT MAPPING

=# ALTER FULLTEXT MAPPING ON testcfg FOR Ihword WITH simple,en_stem;
ALTER FULLTEXT MAPPING

=# \dF+ testcfg

Configuration ’testcfg’

Parser name: 'default’

Locale: 'testlocale’

15

ALTER FULLTEXT MAPPING

Token | Dictionaries

+
T

Ihword | simple,en_stem
lword | simple

See Also
CREATE FULLTEXT MAPPING

16

DROP FULLTEXT MAPPING

Name
DROP FULLTEXT MAPPING- remove a binding between token and dictionaries

Synopsis

DROP FULLTEXT MAPPING [IF EXISTS] ONcfgname FOR tokentypename ;

Description

DROP FULLTEXT MAPPIN@move a full-text mapping in a given configuration for a token of a specific
type.

Parameters

IF EXISTS

Do not throw an error if the specified full-text mapping does not exist. A notice is issued in this case.
cfgname

The name (optionally schema-qualified) of the configuration.
tokentypename

A token type for which full-text mapping dropped.

See Also
CREATE FULLTEXT MAPPING

17

CREATE FULLTEXT PARSER

Name

CREATE FULLTEXT PARSER create a parser for full-text search

Synopsis

CREATE FULLTEXT PARSERrsname
START= start_function
GETTOKEN gettoken_function
END end_function
LEXTYPES lextypes_function
[HEADLINE headline_function]

Description

CREATE FULLTEXT PARSERIll create a new parser used to break document onto lexemes.

If a schema name is given (for exampBREATE FULLTEXT PARSERiwyschema.prsname ...)thenthe
parser is created in the specified schema. Otherwise it is created in the current schema.

More information about developing custom parser is available fromApEendix B

Parameters

prsname

The name (optionally schema-qualified) of the new parser.

START
start_function is the name of the function, that initialize a parser.
GETTOKEN
gettoken_function, is the name of the function, that returns a token.
END
end_function, is the name of the function, that called after parsing is finished.
LEXTYPES
lextypes_function, is the name of the function, that returns an array containing the id, alias and

the description of the tokens of a parser.

18

CREATE FULLTEXT PARSER

HEADLINE

headline_function, is the name of the function, that returns a representative piece of document.

See Also
DROP FULLTEXT PARSERLTER FULLTEXT PARSER

19

DROP FULLTEXT PARSER

Name
DROP FULLTEXT PARSER remove a full-text parser

Synopsis

DROP FULLTEXT PARSER [IF EXISTS] prsname [CASCADE | RESTRICT J;

Description

DROP FULLTEXT PARSERmoves full-text parser from the database. Only its owner may destroy a
parser.

To drop a parser and all FTS objects, which depends @ABCADENuUst be specified.

Parameters

IF EXISTS
Do not throw an error if the parser does not exist. A notice is issued in this case.
prsname
The name (optionally schema-qualified) of the parser to drop.
CASCADE
Automatically drop FTS objects that depend on the parser.
RESTRICT

Refuse to drop the parser if any objects depend on it. This is the default.

See Also
CREATE FULLTEXT PARSER

20

ALTER FULLTEXT PARSER

Name

ALTER FULLTEXT PARSER-change a full-text parser

Synopsis

ALTER FULLTEXT PARSERrsname RENAME Thewprsname ;

Description

ALTER FULLTEXT PARSERhanges an existing full-text parser.

Parameters

prsname
The name (optionally schema-qualified) of the parser to rename.

newprsname

The new name of the parser. Notice, that schema cannot be changed.

See Also
CREATE FULLTEXT PARSER

21

ALTER FULLTEXT ... OWNER

Name
ALTER FULLTEXT ... OWNER— change the owner of a full-text object

Synopsis

ALTER FULLTEXT { PARSER|DICTIONARY|CONFIGURATION }name OWNER TQ®ewowner ;

Description

ALTER FULLTEXT ... OWNERchanges the owner of an existing full-text object.

Parameters

name
The name (optionally schema-qualified) of the full-text object.
newowner

The new owner of the full-text object.

Examples

In this example we want to create new dictionary in sch&asta using predefined dictionary from system
catalog. Then we change owner of the new dictionary. To demonstrate visibility rule we use the name of
the dictionary without schema but setting the proggrch_path . The name of the new dictionary is

the same by intent.

=# CREATE SCHEMA test;
=# CREATE FULLTEXT DICTIONARY test.synonym LIKE pg_catalog."synonym";
=# SHOW search_path;
search_path
"$user”,public
=# SET search_path TO test,public;
=# ALTER FULLTEXT DICTIONARY synonym OWNER TO megera;

22

COMMENT ON FULLTEXT

Name
COMMENT ON FULLTEX¥ define or change the comment of a full-text object

Synopsis

COMMENT ON FULLTEXT { CONFIGURATION | DICTIONARY | PARSER bbjname IS text ;

Description

COMMENT ON FULLTEXMores a comment about a full-text object (configuration, dictionary, parser).

To modify a comment, issue a NneEBOMMENT ON FULLTEXDmmand for the same full-text object.
Only one comment string is stored for each object. To remove a comment,Nutitein place of the
text string. Comments are automatically dropped when the object is dropped.

Parameters

objname
The name (optionally schema-qualified) of the full-text object.
text

The new comment, written as a string literal;NWLL to drop the comment.

Examples

=# COMMENT ON FULLTEXT DICTIONARY intdict IS ’Dictionary for integers’;
=# \dFd+ intdict
List of fulltext dictionaries
Schema | Name | Init method | Lexize method | Init options [Description
+ + + + +

public | intdict | dinit_intdict | dlexize_intdict | MAXLEN=6,REJECTLONG=false | Dictionary for integers

23

Il. Appendixes

24

Appendix A. FTS Complete Tutorial

This tutorial is about how to setup typical FTS application using PostgreSQL.

We create our configuratigsg, which will be default for localeu_RU.UTF-8 . To be safe, we do this in
transaction.

begin;

CREATE FULLTEXT CONFIGURATION public.pg LOCALE ’'ru_RU.UTF-8' LIKE english WITH MAP;
ALTER FULLTEXT CONFIGURATION public.og SET AS DEFAULT,;

We'll use postgresql specific dictionary usirgynonym template dictionary and store it under
PG_ROOT/share/dicts_data directory. The dictionary looks like:

postgres pg
pgsql P9
postgresqgl pg

CREATE FULLTEXT DICTIONARY pg_dict OPTION ’pg_dict.txt’ LIKE synonym;

Register ispell dictionargn_ispell usingispell_template template.

CREATE FULLTEXT DICTIONARY en_ispell

OPTION 'DictFile="/usr/local/share/dicts/ispell/english-utf8.dict",
AffFile="/usr/local/share/dicts/ispell/english-utf8.aff",
StopFile="/usr/local/share/dicts/ispell/english-utf8.stop™

LIKE ispell_template;

Use the same stop-word list for snowball stemenestem , which is available on default.

ALTER FULLTEXT DICTIONARY en_stem SET OPTION 'lusr/local/share/dicts/ispell/english-utf8.stop’;

Modify mappings for Latin words for configuration 'pg’

ALTER FULLTEXT MAPPING ON pg FOR Iword,lhword,lpart_hword
WITH pg_dict,en_ispell,en_stem;

We won't index/search some tokens

DROP FULLTEXT MAPPING ON pg FOR email, url, sfloat, uri, float;

Now, we could test our configuration.

select * from ts_debug(public.pg’, ’

25

Appendix A. FTS Complete Tutorial

PostgreSQL, the highly scalable, SQL compliant, open source object-relational
database management system, is now undergoing beta testing of the next
version of our software: PostgreSQL 8.2.

)

end;

We have a tablegweb, which contains 11239 documents from PostgreSQL web site. Only relevant
columns are shown.

=# \d pgweb
Table "public.pgweb"
Column | Type | Modifiers
+ +
tid | integer | not null
path | character varying | not null
body | character varying |
title | character varying |
dim | integer [

First we should take care about default FTS configuration - we wardudlic.pg to be default. To do
so, we need to redefireearch_path , since we already have predefined default full-text configuration
(for ru_RU.UTF-8 locale) irpg_catalog

=# \dF
pg_catalog | russian_utf8 | ru_RU.UTF-8 |Y
public | pg | ru_RU.UTF-8 | Y

=# show tsearch_conf_name;
tsearch_conf_name

pg_catalog.russian_utf8
=# SET search_path=public, pg_catalog;

=# show tsearch_conf_name;
tsearch_conf_name

public.pg

The very simple full-text search without ranking is already available here. Select top 10 fresh documents

(dim

is last-modified date in seconds since 1970), which contains queate table

=# select title from pgweb where textcat(title,body) @@
plainto_tsquery('create table’) order by dim desc limit 10;

26

Appendix A. FTS Complete Tutorial

We can create index to speedup search.
=# create index pgweb_idx on pgweb using gin(textcat(title,body));

For clarity, we omitted hereoalesce function to prevent unwanted effect BfJLL concatenation.

To implement FTS with ranking support we negdector column to store preprocessed document,
which is a concatenation ¢fle andbody . We assign different labels to them to preserve information
about origin of every word.

=# alter table pgweb add column fts_index tsvector;
=# update pgweb set fts_index =
setweight(to_tsvector(coalesce (title,”)), 'A’) ||
setweight(to_tsvector(coalesce (body,”)),'D");

Then we create GIN index to speedup search.
=# create index fts_idx on pgweb using gin(fts_index);
After vacuuming, we are ready to perform full-text search.
=# select rank_cd(fts_index, g)as rank, title from pgweb,

plainto_tsquery('create table’) q
where g @@ fts_index order by rank desc limit 10;

27

Appendix B. FTS Parser Example

SQL commandCREATE FULLTEXT PARSEReates a parser for full-text search. In our example we will
implement a simple parser, which recognize space delimited words and has only two types (3, word, Word;
12, blank, Space symbols). Identifiers were chosen to keep compatibility with defadlihe() , since

we won't implement our version.

To implement parser one need to realize minimum four functi@REATE FULLTEXT PARSER.

START = start_function

Initialize the parser. Arguments are a pointer to the parsed text and its length.

Returns a pointer to the internal structure of a parser. Note, it should be malloced or palloced in
TopMemoryContext . We name iParserState

GETTOKEN =gettoken_function

Returns the next token. Arguments &ParserState *),(char **), (int *)

This procedure will be called so long as the procedure return token type = 0.

END = end_function

Void function, will be called after parsing is finished. We have to free our allocated resources in this
procedure (ParserState). ArgumeniHarserState *)

LEXTYPES = lextypes_function

Returns an array containing the id, alias and the description of the tokens of our parsexk&aer
in src/include/utils/ts_public.h

Source code of our test parser, organized as a contrib module, available in the next section.

Testing:
=# SELECT * FROM parse('testparser’,'That’s my first own parser’);
tokid | token
_______ Fomm————
3 | That's
12 |
3| my
12 |
3 | first
12 |
3 | own
12 |
3 | parser

=# SELECT to_tsvector('testcfg’, ' That’s my first own parser’);
to_tsvector

'my’:2 'own:4 ‘first:3 ’'parser:5 ’that’s’:1
=# SELECT headline('testcfg’,’'Supernovae stars are the brightest phenomena in galaxies’, to_tsquery(testcfg’,

28

Appendix B. FTS Parser Example

headline

Supernovae stars are the brightest phenomena in galaxies

B.1. Parser sources

Parser sources was adapted to 8.3 release from original tutorial by Valli parser HOWTO

To compile an example just do

make
make install
psql regression < test_parser.sql

This is atest_parser.c

#ifdef PG_MODULE_MAGIC
PG_MODULE_MAGIC;
#endif

/*
* types
*/

/* self-defined type */

typedef struct {
char * buffer; /* text to parse */
int len; /* length of the text in buffer */
int pos; [* position of the parser */

} ParserState;

/* copy-paste from wparser.h of tsearch2 */
typedef struct {

int lexid;

char *alias;

char *descr;
} LexDescr;

/*

* prototypes

*/
PG_FUNCTION_INFO_Vl1(testprs_start);
Datum testprs_start(PG_FUNCTION_ARGS);

PG_FUNCTION_INFO_Vl1(testprs_getlexeme);
Datum testprs_getlexeme(PG_FUNCTION_ARGS);

1. http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/docs/HOWTO-parser-tsearch2.htmi

29

Appendix B. FTS Parser Example

PG_FUNCTION_INFO_Vl1(testprs_end);
Datum testprs_end(PG_FUNCTION_ARGS);

PG_FUNCTION_INFO_Vl1(testprs_lextype);
Datum testprs_lextype(PG_FUNCTION_ARGS);

/*
* functions
*/
Datum testprs_start(PG_FUNCTION_ARGS)
{
ParserState *pst = (ParserState *) palloc(sizeof(ParserState));
pst->buffer = (char *) PG_GETARG_POINTER(0);
pst->len = PG_GETARG_INT32(1);
pst->pos = 0;

PG_RETURN_POINTER(pst);

}
Datum testprs_getlexeme(PG_FUNCTION_ARGS)
{
ParserState *pst = (ParserState *) PG_GETARG_POINTER(0);
char *kt = (char **) PG_GETARG_POINTER(1);
int *flen = (int *) PG_GETARG_POINTER(2);
int type;

*tlen = pst->pos;
*t = pst->buffer + pst->pos;

if ((pst->buffer)[pst->pos] == ' ') {
[* blank type */
type = 12;
/* go to the next non-white-space character */
while (((pst->buffer)[pst->pos] == ' ') && (pst->pos < pst->len)) {
(pst->pos)++;
}
} else {
[* word type */
type = 3;
/* go to the next white-space character */
while (((pst->buffer)[pst->pos] = ') && (pst->pos < pst->len)) {
(pst->pos)++;
}
}

*tlen = pst->pos - *tlen;

/* we are finished if (*tlen == 0) */
if (*tlen == 0) type=0;

PG_RETURN_INT32(type);
}

30

Appendix B. FTS Parser Example

Datum testprs_end(PG_FUNCTION_ARGS)

{
ParserState *pst = (ParserState *) PG_GETARG_POINTER(0);
pfree(pst);
PG_RETURN_VOID();

}

Datum testprs_lextype(PG_FUNCTION_ARGS)
{
/*
Remarks:
- we have to return the blanks for headline reason
- we use the same lexids like Teodor in the default
word parser; in this way we can reuse the headline
function of the default word parser.
*/
LexDescr *descr = (LexDescr *) palloc(sizeof(LexDescr) * (2+1));

[* there are only two types in this parser */
descr[0].lexid = 3;

descr[0].alias = pstrdup("word");
descr[0].descr = pstrdup("Word");
descr[1].lexid 12;

descr[1].alias = pstrdup("blank");
descr[1].descr = pstrdup("Space symbols");
descr[2].lexid = 0;

PG_RETURN_POINTER(descr);

This is aMakefile

override CPPFLAGS := -l. $(CPPFLAGS)

MODULE_big = test_parser
OBJS = test_parser.o

DATA_built = test_parser.sql
DATA =

DOCS = README.test_parser
REGRESS = test_parser

ifdef USE_PGXS

PGXS := $(shell pg_config --pgxs)

include $(PGXS)

else

subdir = contrib/test_parser

top_builddir = ../..

include $(top_builddir)/src/Makefile.global
include $(top_srcdir)/contrib/contrib-global.mk
endif

31

Appendix B. FTS Parser Example

This is atest_parser.sql.in

SET search_path = public;
BEGIN;

CREATE FUNCTION testprs_start(internal,int4)
RETURNS internal

AS 'MODULE_PATHNAME’

LANGUAGE 'C’ with (isstrict);

CREATE FUNCTION testprs_getlexeme(internal,internal,internal)
RETURNS internal

AS 'MODULE_PATHNAME’

LANGUAGE 'C’ with (isstrict);

CREATE FUNCTION testprs_end(internal)
RETURNS void

AS 'MODULE_PATHNAME’

LANGUAGE ’'C’ with (isstrict);

CREATE FUNCTION testprs_lextype(internal)
RETURNS internal

AS 'MODULE_PATHNAME’

LANGUAGE ’'C’ with (isstrict);

CREATE FULLTEXT PARSER testparser

START ‘testprs_start’
GETTOKEN ‘testprs_getlexeme’
END ‘testprs_end’

LEXTYPES ‘’testprs_lextype’

CREATE FULLTEXT CONFIGURATION testcfy PARSER ‘testparser’ LOCALE NULL;
CREATE FULLTEXT MAPPING ON testcfg FOR word WITH simple;

END;

32

Appendix C. FTS Dictionary Example

Motivation for this dictionary is to control indexing of integers (signed and unsigned), and, consequently,
to minimize the number of unique words, which, in turn, greatly affects to performance of searching.

Dictionary accepts two init options:

+ MAXLENparameter specifies maximum length of the number considered as a 'good’ integer. Default
value is 6.

« REJECTLONGparameter specifies if ’long’ integer should be indexed or treated as a stop-word. If
REJECTLONGFALSE (default), than dictionary returns prefixed part of integer number with length
MAXLENIf REJECTLONGTRUE than dictionary consider integer as a stop word.

Similar idea can be applied to the indexing of decimal numbers, for exabgi®ict dictionary. Dic-
tionary accepts two init options$IAXLENFRA@arameter specifies maximum length of the fraction part
considered as a 'good’ decimal, default value IRBIECTLONGarameter specifies if decimal number
with ’long’ fraction part should be indexed or treated as a stop worBEIfECTLONGFALSE (default),
than dictionary returns decimal number with length of fraction pBXLENIf REJECTLONGTRUE than
dictionary consider number as a stop word. Notice, RE:EECTLONGFALSE allow indexing 'shortened’
numbers and search results will contain documents with original 'garbage’ numbers.

Examples:

=# select lexize('intdict’, 11234567890);
lexize

{112345}

Now, we want to ignore long integers.

=# ALTER FULLTEXT DICTIONARY intdict SET OPTION 'MAXLEN=6, REJECTLONG=TRUE;
=# select lexize('intdict’, 11234567890);
lexize

Create contrib/dict_intdict directory with filedict_tmpl.c,Makefile,dict_intdict.sqgl.in
then

make && make install
psql DBNAME < dict_intdict.sql

33

Appendix C. FTS Dictionary Example

This is adict_tmpl.c file.

#include "postgres.h"
#include "utils/builtins.h"
#include "fmgr.h"

#ifdef PG_MODULE_MAGIC
PG_MODULE_MAGIC;
#endif

#include "utils/ts_locale.h"
#include "utils/ts_public.h"
#include "utils/ts_utils.h"

typedef struct {
int maxlen;
bool rejectlong;
} Dictint;

PG_FUNCTION_INFO_V1(dinit_intdict);
Datum dinit_intdict(PG_FUNCTION_ARGS);

Datum

dinit_intdict(PG_FUNCTION_ARGS) {
Dictint *d = (DictInt*)malloc(sizeof(Dictint));
Map *cfg, *pcfg;
text *in;

if (!d)
elog(ERROR, "No memory");
memset(d,0,sizeof(Dictint));

/* Your INIT code */
[* defaults */

d->maxlen = 6;

d->rejectlong = false;

if (PG_ARGISNULL(0) || PG_GETARG_POINTER(0) == NULL) { /* no options */
PG_RETURN_POINTER(d);
}
in = PG_GETARG_TEXT_P(0);
parse_keyvalpairs(in,&cfg);
PG_FREE_IF_COPY(in, 0);
pcfg=cfg;

while (pcfg->key) {
if (strcasecmp("MAXLEN", pcfg->key) == 0) {
d->maxlen=atoi(pcfg->value);
} else if (strcasecmp("REJECTLONG", pcfg->key) == 0) {

if (strcasecmp("true”, pcfg->value) == 0) {
d->rejectlong=true;
} else if (strcasecmp(“false”, pcfg->value) == 0) {

34

Appendix C. FTS Dictionary Example

d->rejectlong=false;

} else {

elog(ERROR,"Unknown value: %s => %s", pcfg->key,

pcfg->value);

elog(ERROR,"Unknown option: %s => %s", pcfg->key, pcfg->

}
} else {
value);

}
pfree(pcfg->key);
pfree(pcfg->value);
pcfg++;

}

pfree(cfg);

PG_RETURN_POINTER(d);

}

PG_FUNCTION_INFO_V1(dlexize_intdict);
Datum dlexize_intdict(PG_FUNCTION_ARGS);
Datum

dlexize_intdict(PG_FUNCTION_ARGS) {

Dictint *d = (Dictint*)PG_GETARG_POINTER(0);
char *in = (charY)PG_GETARG_POINTER(1);
char *txt = pnstrdup(in, PG_GETARG_INT32(2));

TSLexeme *res=palloc(sizeof(TSLexeme)*2);

/* Your INIT dictionary code */
res[1].lexeme = NULL;

if (PG_GETARG_INT32(2) > d->maxlen) {
[* stop, return void array */

if (d->rejectlong) {
pfree(txt);

res[0].lexeme = NULL;

} else {
txt[d->maxlen] = \0’;
res[0].lexeme = txt;
}
} else {
res[0].lexeme = txt;

}

PG_RETURN_POINTER(res);
}

This is aMakefile

subdir = contrib/dict_intdict
top_builddir = ../..
include $(top_builddir)/src/Makefile.global

MODULE_big = dict_intdict
OBJS = dict_tmpl.o
DATA_built = dict_intdict.sql

/* cut integer */

35

Appendix C. FTS Dictionary Example

DOCS =

include $(top_srcdir)/contrib/contrib-global.mk

This is adict_intdict.sgl.in

SET search_path = public;
BEGIN;

CREATE OR REPLACE FUNCTION dinit_intdict(internal)
returns internal
as 'MODULE_PATHNAME’
language 'C’;

CREATE OR REPLACE FUNCTION dlexize_intdict(internal,internal,internal,internal)
returns internal
as 'MODULE_PATHNAME’
language 'C’
with (isstrict);

CREATE FULLTEXT DICTIONARY intdict
LEXIZE ‘’dlexize_intdict’ INIT ’dinit_intdict’
OPTION 'MAXLEN=6,REJECTLONG=false’
COMMENT ON FULLTEXT DICTIONARY intdict IS ’'Dictionary for Integers’;

END;

36

Index GIsT. ?

Symbols

headline, ?
I TSQUERY, ?

ALTER FULLTEXT ... OWNER, ? index
ALTER FULLTEXT CONFIGURATION, ? full-text, ?
ALTER FULLTEXT DICTIONARY, ?

ALTER FULLTEXT MAPPING, ?

ALTER FULLTEXT PARSER, ? L

length(tsvector), ?
B lexize, ?

Btree operations for TSQUERY, ?
Btree operations for tsvector, ?

N
C numnode, ?
COMMENT ON FULLTEXT, ?
CREATE FULLTEXT CONFIGURATION, ? P
CREATE FULLTEXT DICTIONARY, ?
CREATE FULLTEXT MAPPING, ? parse, ?
CREATE FULLTEXT PARSER, ? plainto_tsquery, ?

document, ?

DROP FULLTEXT CONFIGURATION, ?
DROP FULLTEXT DICTIONARY, ?
DROP FULLTEXT MAPPING, ?

querytree, ?

DROP FULLTEXT PARSER, ? R
rank, ?
F rank_cd, ?
rewrite - 1, ?
FTS, ? rewrite - 2, ?
full-text index rewrite - 3, ?
GIN, ?

37

setweight, ?
stat, ?
strip, ?

TEXT @@ TEXT, ?

TEXT @@ TSQUERY, ?
text::tsquery casting, ?
text::tsvector, ?

token_type, ?

to_tsquery, ?

to_tsvector, ?

tsearch trigger, ?

tsquery, ?

TSQUERY && TSQUERY, ?
TSQUERY <@ TSQUERY, ?
TSQUERY @> TSQUERY, ?
TSQUERY @@ TSVECTOR, ?
TSQUERY || TSQUERY, ?
tsvector, ?

tsvector concatenation, ?

38

	FullText Search in PostgreSQL
	Table of Contents
	Chapter 1. FTS Introduction
	1.1. Full Text Search in databases
	1.1.1. What is a document?

	1.2. FTS Overview
	1.2.1. Tsquery and tsvector
	1.2.2. FTS operator

	1.3. Basic operations
	1.3.1. Obtaining tsvector
	1.3.2. Obtaining tsquery
	1.3.3. Ranking search results
	1.3.4. Getting results
	1.3.5. Dictionaries
	1.3.6. Stop words

	1.4. FTS features
	1.5. FTS Limitations
	1.6. A Brief History of FTS in PostgreSQL
	1.6.1. Pretsearch
	1.6.2. Tsearch v1
	1.6.3. Tsearch v2
	1.6.4. FTS current

	1.7. Links
	1.8. FTS Todo
	1.9. Acknowledgements

	Chapter 2. FTS Operators and Functions
	2.1. FTS operator
	2.2. Vector Operations
	2.3. Query Operations
	2.3.1. Query rewriting
	2.3.2. Operators for tsquery
	2.3.3. Index for tsquery

	2.4. Parser functions
	2.5. Ranking
	2.6. Headline
	2.7. Fulltext indexes
	2.8. Dictionaries
	2.8.1. Simple dictionary
	2.8.2. Ispell dictionary
	2.8.3. Snowball stemming dictionary
	2.8.4. Synonym dictionary
	2.8.5. Thesaurus dictionary
	2.8.5.1. Thesaurus configuration
	2.8.5.2. Thesaurus examples

	2.9. FTS Configuration
	2.10. Debugging
	2.11. Psql support

	I. FTS Reference
	I. SQL Commands
	CREATE FULLTEXT CONFIGURATION
	Name
	Synopsis
	Description
	Parameters
	Examples
	See Also

	DROP FULLTEXT CONFIGURATION
	Name
	Synopsis
	Description
	Parameters
	See Also

	ALTER FULLTEXT CONFIGURATION
	Name
	Synopsis
	Description
	Parameters
	Examples
	See Also

	CREATE FULLTEXT DICTIONARY
	Name
	Synopsis
	Description
	Parameters
	Examples
	See Also

	DROP FULLTEXT DICTIONARY
	Name
	Synopsis
	Description
	Parameters
	See Also

	ALTER FULLTEXT DICTIONARY
	Name
	Synopsis
	Description
	Parameters
	See Also

	CREATE FULLTEXT MAPPING
	Name
	Synopsis
	Description
	Parameters
	Examples
	See Also

	ALTER FULLTEXT MAPPING
	Name
	Synopsis
	Description
	Parameters
	Examples
	See Also

	DROP FULLTEXT MAPPING
	Name
	Synopsis
	Description
	Parameters
	See Also

	CREATE FULLTEXT PARSER
	Name
	Synopsis
	Description
	Parameters
	See Also

	DROP FULLTEXT PARSER
	Name
	Synopsis
	Description
	Parameters
	See Also

	ALTER FULLTEXT PARSER
	Name
	Synopsis
	Description
	Parameters
	See Also

	ALTER FULLTEXT ... OWNER
	Name
	Synopsis
	Description
	Parameters
	Examples

	COMMENT ON FULLTEXT
	Name
	Synopsis
	Description
	Parameters
	Examples

	II. Appendixes
	Appendix A. FTS Complete Tutorial
	Appendix B. FTS Parser Example
	B.1. Parser sources

	Appendix C. FTS Dictionary Example
	Index
	Symbols
	A
	B
	C
	D
	F
	H
	I
	L
	N
	P
	Q
	R
	S
	T

