
Features where PostgreSQL lags behind its competitors
Standard SQL Gap Analysis

PgCon.org 2018 — @MarkusWinand

http://pgcon.org

I run modern-sql.com:

Background: Where the data comes from

‣Teaching “new” SQL 
 features to developers

‣Showing availability of 
 those features in popular 
 databases

http://modern-sql.com

The charts are based on test cases.[0]

The test cases are created while reading ISO/IEC 9075:2016.
The level of detail for different features varies widely at the moment.

Background: Where the data comes from

[0] Some “legacy charts” are still based on reading the docs.
DB2 L

UW
MyS

QL

0

Ora
cle

Pos
tg

reS
QL

SQL S
er

ve
r

SQLit
e

filter clause
Emulation using case

0 The filter_plugin extension (3rd party) rewrites filter to case using regular expressions.

For brevity, I’m using the word 
“wrong” 
to mean 

“not conforming to the standard”.

This neither implies that it is “bad” nor that it is a bug, 
nor that it is worth changing. 

I just means that it is not the way I understand the standard.

One last Word

Less Complete or Conforming Features

EXTRACT	

Get a Field from a Date or Time Value

DB2
LU

W

0

M
yS

QL

1

Ora
cle

3

Pos
tg

re
SQL

2

2

SQL
Ser

ve
r

SQLit
e

extract(… from <datetime>)

extract(… from <interval>)

cast(<timestamp> as date)

cast(<timestamp> as time)
0 No time zone fields.
1 No time zone fields. SECOND does not include fractions. Use SECOND_MICROSECOND.
2 Returns approximate numeric type.
3 See “Caution: Oracle Database” above.

EXTRACT: “Wrong” declared type

DB2
LU

W

0

M
yS

QL

1

Ora
cle

3

Pos
tg

re
SQL

2

2

SQL
Ser

ve
r

SQLit
e

extract(… from <datetime>)

extract(… from <interval>)

cast(<timestamp> as date)

cast(<timestamp> as time)
0 No time zone fields.
1 No time zone fields. SECOND does not include fractions. Use SECOND_MICROSECOND.
2 Returns approximate numeric type.
3 See “Caution: Oracle Database” above.

EXTRACT: “Wrong” declared type

DB2
LU

W

0

M
yS

QL

1

Ora
cle

3

Pos
tg

re
SQL

2

2

SQL
Ser

ve
r

SQLit
e

extract(… from <datetime>)

extract(… from <interval>)

cast(<timestamp> as date)

cast(<timestamp> as time)
0 No time zone fields.
1 No time zone fields. SECOND does not include fractions. Use SECOND_MICROSECOND.
2 Returns approximate numeric type.
3 See “Caution: Oracle Database” above.

EXTRACT: “Wrong” declared type

[RESPECT|IGNORE]	NULLS	

Skip over null values in window functions  
lead, lag, fist_value, last_value, nth_value	

(T616, T618)

DB2
LU

W

0

3

M
ar

ia
DB

1

2

4

M
yS

Q
L

2

2

4

O
ra

cl
e

Pos
tg

re
SQ

L

2

2

4

SQ
L

Ser
ve

r

2

2

SQ
Li

te

LEAD and LAG

FIRST_VALUE, LAST_VALUE

NTH_VALUE

Nested window functions
0 No IGNORE NULLS Different syntax: first_value(<expr>, 'IGNORE NULLS') (it's a string argument)
1 No IGNORE NULLS No default possible (3rd argument).
2 No IGNORE NULLS
3 No IGNORE NULLS Different syntax: lead(<expr>, 1, null, 'IGNORE NULLS') (it's a string argument)
4 No IGNORE NULLS. No FROM LAST

Window Functions: null handling, from last

DB2
LU

W

0

3

M
ar

ia
DB

1

2

4

M
yS

Q
L

2

2

4

O
ra

cl
e

Pos
tg

re
SQ

L

2

2

4

SQ
L

Ser
ve

r

2

2

SQ
Li

te

LEAD and LAG

FIRST_VALUE, LAST_VALUE

NTH_VALUE

Nested window functions
0 No IGNORE NULLS Different syntax: first_value(<expr>, 'IGNORE NULLS') (it's a string argument)
1 No IGNORE NULLS No default possible (3rd argument).
2 No IGNORE NULLS
3 No IGNORE NULLS Different syntax: lead(<expr>, 1, null, 'IGNORE NULLS') (it's a string argument)
4 No IGNORE NULLS. No FROM LAST

Window Functions: null handling, from last

COUNT(DISTINCT	…)	OVER(…)	

Distinct aggregates as window function	
(T611)

Window Functions: no distinct aggregates

DB2 L
UW

Mar
iaD

B
MyS

QL
Ora

cle
Pos

tg
reS

QL
SQL S

er
ve

r
SQLit

e

Aggregates (count, sum, min, ...)
Distinct Aggregates

FETCH	[FIRST|NEXT]	…	

The standard’s answer to LIMIT, but more options	
(T866, T867)

DB2
LU

W

2

6

M
yS

QL

0

0

0

Ora
cle

Pos
tg

re
SQL

3

6

SQL
Ser

ve
r

1

1

1

4

5

SQLit
e

0

0

0

Top-level fetch first

Subqueries with fetch first

Top-level fetch first in views

Dynamic quantity

fetch first … percent

fetch first … with ties

SQL State 2201W if quantity < 1
0 Use proprietary limit
1 Use proprietary top
2 Use nested query: CREATE VIEW … AS SELECT … FROM (SELECT … FROM … FETCH FIRST …) t
3 Requires parenthesis: (?)
4 Use proprietary select top … percent
5 Use proprietary select top … with ties
6 Not for 0 (zero)

FETCH	FIRST: no percent, no with ties

DB2
LU

W

2

6

M
yS

QL

0

0

0

Ora
cle

Pos
tg

re
SQL

3

6

SQL
Ser

ve
r

1

1

1

4

5

SQLit
e

0

0

0

Top-level fetch first

Subqueries with fetch first

Top-level fetch first in views

Dynamic quantity

fetch first … percent

fetch first … with ties

SQL State 2201W if quantity < 1
0 Use proprietary limit
1 Use proprietary top
2 Use nested query: CREATE VIEW … AS SELECT … FROM (SELECT … FROM … FETCH FIRST …) t
3 Requires parenthesis: (?)
4 Use proprietary select top … percent
5 Use proprietary select top … with ties
6 Not for 0 (zero)

FETCH	FIRST: no percent, no with ties

Docs: unsupported features:

Functional Dependencies

(T301)

DB2 L
UW

Mar
iaD

B
MyS

QL
Ora

cle
Pos

tg
reS

QL

0

SQL S
er

ve
r

SQLit
e

Base table PRIMARY KEY

Base table UNIQUE

Joined tables
WHERE clause

GROUP BY clause
0 Not following joins to PRIMARY KEYs or UNIQUE constraints

Functional dependencies: only simplest cases

Docs: unsupported features:

DB2 L
UW

Mar
iaD

B
MyS

QL
Ora

cle
Pos

tg
reS

QL

0

SQL S
er

ve
r

SQLit
e

Base table PRIMARY KEY

Base table UNIQUE

Joined tables
WHERE clause

GROUP BY clause
0 Not following joins to PRIMARY KEYs or UNIQUE constraints

Functional dependencies: only simplest cases
SELECT	COUNT(*)	cnt,	t2.b	
		FROM	t1	

	INNER	JOIN	t2	ON	(t1.pk	=	t2.pk)	

	GROUP	BY	t1.pk

Docs: unsupported features:

Functional dependencies: only simplest cases

Functional dependencies: only simplest cases
Still room for vendor extensions.
e.g. related to ROW_NUMBER and

ORDINALITY.

Unsupported features that other DBs have

Row Pattern Recognition

(match_recognize)

(R010, R020, R030)

SELECT	COUNT(*)	sessions	

					,	AVG(duration)	avg_duration	
		FROM	log	

							MATCH_RECOGNIZE(

								ORDER	BY	ts	

								MEASURES	
									LAST(ts)	-	FIRST(ts)	AS	duration	
								ONE	ROW	PER	MATCH	
								PATTERN	(any	cont*)	
								DEFINE	cont	AS	ts	<	PREV(ts)	
																										+	INTERVAL	'30'	minute		
)	t

Since SQL:2016Row Pattern Matching

Time

30 minutes

Oracle doesn’t support avg on intervals — query doesn’t work as shown

SELECT	COUNT(*)	sessions	

					,	AVG(duration)	avg_duration	
		FROM	log	

							MATCH_RECOGNIZE(

								ORDER	BY	ts	

								MEASURES	
									LAST(ts)	-	FIRST(ts)	AS	duration	
								ONE	ROW	PER	MATCH	
								PATTERN	(any	cont*)	
								DEFINE	cont	AS	ts	<	PREV(ts)	
																										+	INTERVAL	'30'	minute		
)	t

Since SQL:2016Row Pattern Matching

Time

30 minutes

define 
continued

Oracle doesn’t support avg on intervals — query doesn’t work as shown

SELECT	COUNT(*)	sessions	

					,	AVG(duration)	avg_duration	
		FROM	log	

							MATCH_RECOGNIZE(

								ORDER	BY	ts	

								MEASURES	
									LAST(ts)	-	FIRST(ts)	AS	duration	
								ONE	ROW	PER	MATCH	
								PATTERN	(any	cont*)	
								DEFINE	cont	AS	ts	<	PREV(ts)	
																										+	INTERVAL	'30'	minute		
)	t

Since SQL:2016Row Pattern Matching

Time

30 minutes

Oracle doesn’t support avg on intervals — query doesn’t work as shown

undefined 
pattern variable:
matches any row

SELECT	COUNT(*)	sessions	

					,	AVG(duration)	avg_duration	
		FROM	log	

							MATCH_RECOGNIZE(

								ORDER	BY	ts	

								MEASURES	
									LAST(ts)	-	FIRST(ts)	AS	duration	
								ONE	ROW	PER	MATCH	
								PATTERN	(any	cont*)	
								DEFINE	cont	AS	ts	<	PREV(ts)	
																										+	INTERVAL	'30'	minute		
)	t

Since SQL:2016Row Pattern Matching

Time

30 minutes

any number 
of “cont” 

rows

Oracle doesn’t support avg on intervals — query doesn’t work as shown

SELECT	COUNT(*)	sessions	

					,	AVG(duration)	avg_duration	
		FROM	log	

							MATCH_RECOGNIZE(

								ORDER	BY	ts	

								MEASURES	
									LAST(ts)	-	FIRST(ts)	AS	duration	
								ONE	ROW	PER	MATCH	
								PATTERN	(any	cont*)	
								DEFINE	cont	AS	ts	<	PREV(ts)	
																										+	INTERVAL	'30'	minute		
)	t

Since SQL:2016Row Pattern Matching

Time

30 minutes

Very much 
like GROUP BY

Oracle doesn’t support avg on intervals — query doesn’t work as shown

SELECT	COUNT(*)	sessions	

					,	AVG(duration)	avg_duration	
		FROM	log	

							MATCH_RECOGNIZE(

								ORDER	BY	ts	

								MEASURES	
									LAST(ts)	-	FIRST(ts)	AS	duration	
								ONE	ROW	PER	MATCH	
								PATTERN	(any	cont*)	
								DEFINE	cont	AS	ts	<	PREV(ts)	
																										+	INTERVAL	'30'	minute		
)	t

Since SQL:2016Row Pattern Matching

Time

30 minutes

Very much 
like SELECT

Oracle doesn’t support avg on intervals — query doesn’t work as shown

SELECT	COUNT(*)	sessions	

					,	AVG(duration)	avg_duration	
		FROM	log	

							MATCH_RECOGNIZE(

								ORDER	BY	ts	

								MEASURES	
									LAST(ts)	-	FIRST(ts)	AS	duration	
								ONE	ROW	PER	MATCH	
								PATTERN	(any	cont*)	
								DEFINE	cont	AS	ts	<	PREV(ts)	
																										+	INTERVAL	'30'	minute		
)	t

Since SQL:2016Row Pattern Matching

Time

30 minutes

Oracle doesn’t support avg on intervals — query doesn’t work as shown

Same as
any.ts

SELECT	COUNT(*)	sessions	

					,	AVG(duration)	avg_duration	
		FROM	log	

							MATCH_RECOGNIZE(

								ORDER	BY	ts	

								MEASURES	
									LAST(ts)	-	FIRST(ts)	AS	duration	
								ONE	ROW	PER	MATCH	
								PATTERN	(any	cont*)	
								DEFINE	cont	AS	ts	<	PREV(ts)	
																										+	INTERVAL	'30'	minute		
)	t

Since SQL:2016Row Pattern Matching

Time

30 minutes

Oracle doesn’t support avg on intervals — query doesn’t work as shown

Endless possibilitesRow Pattern Matching

GROUP	BY 
			➡	ONE	ROW	PER	MATCH

OVER	() 
			➡	ALL	ROWS	PER	MATCH,	FINAL,	RUNNING

HAVING,	WHERE 
			➡	PATTERN (unmatched, suppressed {-	…	-})

Mixing GROUP	BY and OVER() 
			➡	ALL	ROWS	PER	MATCH + all-but-one rows suppressed

Data-driven match length  
			➡ SUM, COUNT, … in DEFINE

Duplicating rows (to some extend) 
			➡ ALL	ROWS	PER	MATCH + AFTER	MATCH	SKIP	TO	…

Row pattern matching — match_recognize

DB2 L
UW

MyS
QL

Ora
cle

Pos
tg

reS
QL

SQL Ser
ve

r
SQLit

e

from clause
window clause

full aggregate support

Free technical report by ISO:
http://standards.iso.org/ittf/PubliclyAvailableStandards/

c065143_ISO_IEC_TR_19075-5_2016.zip

http://standards.iso.org/ittf/PubliclyAvailableStandards/c065143_ISO_IEC_TR_19075-5_2016.zip

Row Pattern Matching Since SQL:2016

https://www.slideshare.net/MarkusWinand/row-pattern-matching-in-sql2016

Stew Ashton has a lot material on this too: 
https://stewashton.wordpress.com/category/match_recognize/

https://www.slideshare.net/MarkusWinand/row-pattern-matching-in-sql2016

Temporal and bi-temporal tables

(T180, T181)

First appeared in SQL:2011.

There is an excellent free paper on it:

Temporal features in SQL:2011
https://sigmodrecord.org/publications/sigmodRecord/1209/pdfs/07.industry.kulkarni.pdf

If you don’t have access to the standard, 
this is the next best resource on it.

Temporal and bi-temporal tables

https://sigmodrecord.org/publications/sigmodRecord/1209/pdfs/07.industry.kulkarni.pdf

➡ System Versioning 
  

 Mostly transparent  
 (done by the system). 
 

 Models when changes  
 happened in the DB.

➡ Application Versioning 
 

 Managed by the application  
 (with SQL support). 

 Can model when changes 
 happened in the real world.

Temporal and bi-temporal tables
There are two versioning features:

Both can be applied on per table level as needed.

➡ System Versioning 
  

 Generated columns 
 GENERATED	ALWAYS 

 

 Period name fixed: 
 SYSTEM_TIME

➡ Application Versioning 
 

 Arbitrary columns 
  

 Arbitrary period names 
 (but only one per table)

Temporal and bi-temporal tables
Both require explicit datetime columns and a period:

➡ System Versioning 
  

 Datetime columns visible  
 (not 100% transparent)[0]

 
 

 User cannot set them. 
 

 Constraints remain  
 unchanged.

➡ Application Versioning 
 

 Datetime columns visible  

  
 User has to provide values.
 

 Constraints need to  
 consider periods 
 (e.g. WITHOUT	OVERLAPS).

Temporal and bi-temporal tables
System versioning takes care of the DMLs.

[0] Some databases offer invisible or hidden columns for transparency.

➡ System Versioning 
  

 FROM	… 
 FOR	SYSTEM_TIME	 
	[AS	OF|BETWEEN|FROM…TO] 

➡ Application Versioning 
 

 In where clause.  

 New predicates for periods:
 contains, overlaps, 
 precedes, succeeds,…

Temporal and bi-temporal tables
For queries, they use a different syntax:

➡ System Versioning 
  

 “AS OF Queries”  
 Konstantin Knizhnik 
 Dec 2017 - Jan 2018

➡ Application Versioning 
 

 “Periods” 
 Vik Fearing 
 May 2018

Temporal and bi-temporal tables
Recent discussions on -hackers:

System-versioned tables

(T180)

System-versioned tables

DB2
LU

W

0

1

2

2

4

M
ar

ia
DB

2

2

4

6

M
yS

Q
L

O
ra

cl
e

Pos
tg

re
SQ

L
SQ

L
Ser

ve
r

2

2

3

5

3

SQ
Li

te

generate always as row …

period for system_time

Add system versioning to table

Drop system versioning from table

for system_time as of …

for system_time between …

for system_time from …

Immutable transaction time
0 Requires row begin instead of row start
1 Without keyword for (period system_time (…))
2 Syntax varies widely
3 Expressions not supported.
4 Without between symmetric
5 Expressions not supported. Without between symmetric
6 Row [start|end] uses statement time, not transaction time.

Released
May 25, 2018

Oracle has similar
(yet different) syntax
to access undo data

(“flashback”).

Limitations and gaps in the standard:
➡ Schema changes are not supported  
 (Most ALTER statements on system-versioned tables fail)
➡ No functionality for retention 
 (also: delete cannot delete historic rows—GDPR right of erasure ;)

➡ FOR	SYSTEM_TIME only works for base tables 
 (not for views, for example. Also no session setting in the standard).
➡ Based on “transaction time” (!= commit time)

System-versioned tables

Notes from current implementations:
➡ History tables are most popular  
 Db2 (LUW) and SQL Server use separate tables for old data.
➡ Partitions let the user choose  
 MariaDB 10.3 use a single logical table that can optionally be 
 partitioned so that current and historic data are segregated.
➡ Finding history data in UNDO (data kept for rollback) 
 Oracle uses the UNDO segment to access historic data. 
 Automatic retention, configurable up to 232 seconds (136yrs)[0].

System-versioned tables

[0] Don’t know if there is a way to retire selected rows (GDPR)

Application-versioned tables

(T181)

DB2 L
UW

Mar
iaD

B
MyS

QL
Ora

cle
Pos

tg
reS

QL

0

1

SQL S
er

ve
r

SQLit
e

period for business_time

without overlaps constraint
update … for portion of

delete … for portion of
0 Use range type.
1 Use exclusion constraint.

Application-versioned tables — model the real world

Functionality is available,
only the standard syntax is

missing

“Periods” Patch from 
May 26 2018

Period Predicates

(T502)

DB2 L
UW

0

Mar
iaD

B
MyS

QL
Ora

cle
Pos

tg
reS

QL

1

1

1

1

1

1

1

SQL S
er

ve
r

SQLit
e

overlaps

equals

contains

precedes

succeeds

immediately precedes

immediately succeeds
0 Doesn't recognize period names. Use (start_ts, end_ts) syntax without keyword period.
1 Use range type and respective operators.

Period Predicates — like range type operators

DB2 L
UW

0

Mar
iaD

B
MyS

QL
Ora

cle
Pos

tg
reS

QL

1

1

1

1

1

1

1

SQL S
er

ve
r

SQLit
e

overlaps

equals

contains

precedes

succeeds

immediately precedes

immediately succeeds
0 Doesn't recognize period names. Use (start_ts, end_ts) syntax without keyword period.
1 Use range type and respective operators.

Period Predicates — like range type operators

Functionality is available,
only the standard syntax is

missing

Generated Columns

(T175)

Generated Columns

DB2 L
UW

Mar
iaD

B

0

MyS
QL

0

Ora
cle

Pos
tg

reS
QL

SQL S
er

ve
r

1

SQLit
e

generate always as (…)
0 Requires data type declaration.
1 Requires data type declaration. Without keywords generated always.

Other use cases:
➡ Function-based indexes 
 (MariaDB/MySQL, SQL Server)

From standards perspective:
➡ Generated columns can  
 be used almost like base columns  
 (e.g. in constraint definitions)

Syntax is shared with
system-versioned tables

and identity columns.

Combined data change and retrieval 
Similar to writeable CTEs	

(T495)

INSERT	INTO	target	

SELECT	*	

		FROM	OLD	TABLE	(DELETE	FROM	source)

Combined Data Change and Retrieval

WITH	cte	AS	(

					DELETE	FROM	source	

					RETURNING	*	

)	

INSERT	INTO	target	

SELECT	*	

		FROM	cte

INSERT	INTO	demo_t495_c	

SELECT	*	

		FROM	OLD	TABLE	(DELETE	FROM	demo_t495)

Combined Data Change and Retrieval

Differences to writeable CTEs:
➡ Three modes: OLD, NEW, FINAL (similar to triggers)
➡ NEW and FINAL is still before AFTER triggers
➡ FINAL fails in case the target table is further modified by

➡ constraints (cascade)
➡ AFTER triggers

Combined Data Change and Retrieval

DB2 L
UW

0

Mar
iaD

B
MyS

QL
Ora

cle
Pos

tg
reS

QL
SQL S

er
ve

r
SQLit

e

[new|final] TABLE (INSERT …)

[…] TABLE (UPDATE …)

[old] TABLE (DELETE …)

[…] TABLE (MERGE …)

In DML
0 Main statement must be select. Workaround via chained with clause.

Partitioned Join 
(not related to partitioned tables)	

(F403)

Partitioned Join — Filling gaps in time series

ts value
1 …
3 …
4 …
5 …

Gap

Partitioned Join — Filling gaps in time series

SELECT	*	

		FROM	data	

	RIGHT	JOIN	generate_series(…) 
				ON	…

ts value
1 …
3 …
4 …
5 …

gen
1
2
3
4
5

RIGHT 
OUTER

Gap

Partitioned Join — Filling gaps in time series

SELECT	*	

		FROM	data	

	RIGHT	JOIN	generate_series(…) 
				ON	…

ts value
1 …
3 …
4 …
5 …

gen
1
2
3
4
5

RIGHT 
OUTER

Gap ts value gen
1 … 1

2
3 … 3
4 … 4
5 … 5

grp ts value
A 1 …
A 3 …
A 4 …
A 5 …
B 2 …
B 4 …
B 5 …

Partitioned Join — Filling gaps in time series
What if you have several time series, 

all of them to be padded?
SELECT	*	

		FROM	(SELECT	DISTINCT	grp	
										FROM	data)	dist	

	CROSS	JOIN	LATERAL	
							(SELECT	*	
										FROM	data	

									RIGHT	JOIN	generate_series(…) 
												ON	… 
											AND	data.grp	=	dist.grp	

)

grp ts value
A 1 …
A 3 …
A 4 …
A 5 …
B 2 …
B 4 …
B 5 …

Partitioned Join — Filling gaps in time series
What if you have several time series, 

all of them to be padded?

SELECT	*	

		FROM	data	PARTITION	BY	(key)	
	RIGHT	JOIN	generate_series(…)	
									ON	…

DB2 L
UW

0

0

1

Mar
iaD

B

1

1

MyS
QL

1

1

Ora
cle

0

Pos
tg

reS
QL

0

0

0

SQL S
er

ve
r

0

0

0

SQLit
e

1
LEFT OUTER partitioned join

RIGHT OUTER partitioned join
FULL OUTER partitioned join

0 Alternative: Select distinct partition key and join lateral for each partition.
1 Alternative: join to cross join of distinct partition key and gap-filler.

Partitioned Join — Filling gaps in time series

LISTAGG	

Like STRING_AGG

(T625)

LISTAGG

DB2 L
UW

1

2

MyS
QL

Ora
cle

0

3

Pos
tg

reS
QL

SQL S
er

ve
r

SQLit
e

listagg(…) within group (…)

listagg(… on overflow …)

listagg(distinct …)

SQLSTATE 22001 on truncation
listagg with grouping sets

stagg… within group… filter…

listagg… within group… over…
0 Since 12.2
1 If ordered by the aggregated values: listagg(distinct X,…) within group (order by X)
2 SQLSTATE 54006
3 SQLSTATE 72000

Distinct data types
CREATE	TYPE	…	AS	<predefined	types>	

(S011 - Core SQL)

Distinct Data Types

DB2 L
UW

Mar
iaD

B
MyS

QL
Ora

cle
Pos

tg
reS

QL
SQL S

er
ve

r
SQLit

e

CREATE TYPE…AS <pred. type>

Work in progress

MERGE	

(F312, F313, F314)

MERGE — conditional insert/update/delete

As of c9c875a 
(just before revert)

MERGE — conditional insert/update/delete

JSON	

(T811–T838)

JSON

JSON

JSON

JSON — Preliminary testing of patches
Used 7fe04ce92 as basis, applied those patches on top:

0001-strict-do_to_timestamp-v14.patch
0002-pass-cstring-to-do_to_timestamp-v14.patch
0003-add-to_datetime-v14.patch
0004-jsonpath-v14.patch
0005-jsonpath-gin-v14.patch
0006-jsonpath-json-v14.patch
0007-remove-PG_TRY-in-jsonpath-arithmetics-v14.patch
0010-add-invisible-coercion-form-v13.patch
0011-add-function-formats-v13.patch
0012-sqljson-v13.patch
0013-sqljson-json-v13.patch
0014-json_table-v13.patch
0015-json_table-json-v13.patch }SQL/JSON: JSON_TABLE

}
}SQL/JSON: jsonpath

SQL/JSON: functions

JSON — Preliminary testing of patches

JSON — Preliminary testing of patches

JSON — Preliminary testing of patches

Standard SQL Gap Analysis
Incomplete or “wrong”:

‣ extract (declared type)

‣ignore	nulls	
‣agg(distinct)	over()	
‣fetch…percent,with	ties	
‣ Functional dependencies

Missing

‣ Row pattern recognition
‣ Temporal tables
‣ Generated Columns
‣ Combined data change  

and retrieval
‣ Partitioned join
‣listagg	
‣ Distinct data types
‣… (this list is not exhaustive)

Work in progress
‣merge ‣ JSON

➡I publish an article on each new version once it is released 
(pretty late for helpful feedback)

➡I start preparing for this article once a public beta is available 
(but it is often pushed by higher priority tasks -> no guarantee)

➡I do not monitor -hackers, but Depesz's “waiting for” 
(This is typically the first time I notice a new feature is coming up)

➡If you have questions on the standard or would like to get
conformance test results at a earlier stage, ping me.

Twitter: @MarkusWinand — markus.winand@winand.at

How can I help?

