Partition and Conquer Large Data in
PostgreSQL 10

DB

ENTERPRISEDB

Ashutosh Bapat (EnterpriseDB)
Amit Langote (NTT OSS center)
@PGCon2017

Partition-wise operations

Partition-wise join

Partition-wise aggregation/grouping

Partition-wise sorting/ordering

Partition-wise set operations?

i

WORK IN PROGRESS

© Copyright EnterpriseDB Corporation, 2017. All Rights Reserved. 2 . ENTERPRI SEDB

Partition-wise operations

Push operations down to partitions

* Improve performance by exploiting properties of partitions
- Indexes, constraints on partitions

* Faster algorithms working on smaller data
* Parallel query: one worker per partition
* FDW push-down for foreign partitions

* Eliminate data from pruned partitions

© Copyright EnterpriseDB Corporation, 2017. All Rights Reserved. 3 ENTERPRI SEDB

Partition pruning

Partitioned table
tl (clint, c2int, ...)

u SELECT * FROM t1
WHERE c1 BETWEEN 150 AND 250;

Partition 4

FOR VALUES

SELECT * FROM t1 WHERE c1 = 350;

FROM (300) TO (400)

Partjtion boungds based elimination

D

© Copyright EnterpriseDB Corporation, 2017. All Rights Reserved. 4 ENTERPRISEDB

Partition-wise join

* Partitioned join
t1 JOIN t2 T
ONtl.cl=t2.cl I |
Partition 1 Partition 1
Partitioned table Partitioned table POl vRUES FOR VALUES
. . 0) TO (100 0) TO (100
tl (clint, ...) t2 (clint, ...) SUSIERY T (0)TO (100)
Partition 1 Partition 1
FOR VALUES FOR VALUES
(0) TO (100) (0) TO (100)

“:-\"

© Copyright EnterpriseDB Corporation, 2017. All Rights Reserved. 5 ENTERPRISEDB

Partition-wise join performance

Different join strategy for each partition-join
— Based on properties of partitions like indexes,
constraints, statistics, sizes etc.

Cheaper strategy for smaller data instead of expensive
strategy for large data
- hash join instead of merge join

— parameterized nested loop join instead of hash/merge
join

Each partition-join may be executed in parallel

Partition-join pushed to the foreign server

- Partitions being joined reside on the same foreign
server

© Copyright EnterpriseDB Corporation, 2017. All Rights Reserved. 6 . ENTERPRI SEDB

Example

\d+ prt1000 1
Table "part mem usage.prtl1000"

Column | Type | Collation | Nullable |
———————————— e e e e
a | integer | | not null |
c | character varying | | |
| | |

a mod 100k | integer
Partition key: RANGE (a)
Partitions: prtl1l000 pl FOR VALUES FROM (0) TO (1000000),
. other 1000 partitions, each partition has 1M rows

\d+ prtl1000 1 pl
Table "part mem usage.prtl1000 pl"

Column | Type | Collation | Nullable |
———————————— Sy
a | integer | | not null |
c | character varying | | |
a mod 100k | integer | | |

Partition of: prt1000 FOR VALUES FROM (0) TO (1000000)
Indexes:

"iprt1000_pl a" btree (a)
* prtl000 2 similarly partitioned

© Copyright EnterpriseDB Corporation, 2017. All Rights Reserved. 7

D

ENTERPRISEDB

Example

Query: select tl.a from prtl000 1 tl1, prtl000 2 t2 where tl.a = t2.a and
t2.a_mod_100k < 200;

With enable partition wise join = false

QUERY PLAN

Hash Join
Hash Cond: (tl.a = t2.a)
-> Append
-> Seq Scan on prtl000 1 pl tl1 1
. repeat 1000 times for 1000 partitions

-> Hash
Buckets: 524288 Batches: 8 Memory Usage: 12861kB
-> Append

-> Seq Scan on prtl000_ 2 pl t2 1
Filter: (a_mod 100k < 200)
Rows Removed by Filter: 998000
. repeat 1000 times for 1000 partitions
Planning time: 1652.877 ms ~ 1.6s
Execution time: 1038588.935 ms ~ 1038s

D

© Copyright EnterpriseDB Corporation, 2017. All Rights Reserved. 8 ENTERPRISEDB

Example

Query: select tl.a from prtl000 1 tl1, prtl000 2 t2 where tl.a = t2.a and
t2.a_mod_100k < 200;

With enable partition wise join = true

QUERY PLAN

Append
-> Nested Loop
-> Seq Scan on prtl000 2 pl t2
Filter: (a _mod 100k < 200)
Rows Removed by Filter: 998000
-> TIndex Only Scan using iprtl1000 pl a on prtl000 1 pl t1l
Index Cond: (a = t2.a)
Heap Fetches: 0
. repeat 1000 times for 1000 joins between partitions

Planning time: 3047.403ms ~ 3s
Execution time: 239987.389ms ~ 239s

tD
© Copyright EnterpriseDB Corporation, 2017. All Rights Reserved. 9 ENTERPRISEDB

Partition-wise aggregation

Agg/Group

t1 JOIN t2
ONtl.cl =t2.cl

Partitioned table
t1 (clint, ...)

Partition 1

Partitioned table
t2 (clint, ...)

Partition 1

© Copyright EnterpriseDB Corporation, 2017. All Rights Reserved.

10

A

Agg/Group

Partition 1

Partition 1

A

Agg/Group

—:—

Agg/Group

—*—

ENTERPRISEDB

Example

Source: Jeevan Chalke's partition-wise aggregate proposal
Query: SELECT a, count(*) FROM pltl GROUP BY a;
pltl: partitioned table with 3 foreign partitions, each with 1M rows

Query returns 30 rows, 10 rows per partition
enable partition wise agg to false
QUERY PLAN
HashAggregate
Group Key: pltl.a
-> Append
-> Foreign Scan on fpltl pl
-> Foreign Scan on fpltl p2
-> Foreign Scan on fpltl p3
Planning time: 0.251 ms
Execution time: 6499.018ms ~ 6.5s

enable partition wise agg to true
QUERY PLAN
Append
-> Foreign Scan: Aggregate on (public.fpltl pl pltl)
-> Foreign Scan: Aggregate on (public.fpltl p2 pltl)
-> Foreign Scan: Aggregate on (public.fpltl p3 pltl)
Planning time: 0.370ms
Execution time: 945.384ms ~ .9s

D

© Copyright EnterpriseDB Corporation, 2017. All Rights Reserved. 11 ENTERPRISEDB

Partition-wise sorting

Sort by c1

t1 JOIN t2
ONtl.cl=t2.cl

Partitioned table
tl (clint, ...)

Partition 1

Partitioned table
t2 (clint, ...)

Partition 1

© Copyright EnterpriseDB Corporation, 2017. All Rights Reserved.

12

Sort by c1

Partition 1

Partition 1

“:-\"

ENTERPRISEDB

n
: L
° o]
HeedN = o e
Q O g -
Begg < = cheers 0 N~ _
% - &h £ £ hvala glamasggi
grazie %2 tak & kltos welatin bﬂ 'g
mahalo _ @i _ <= thanks

gracias <= = 2 domo amgml
merci gdankon S = danke -2, grattitude
thankaoﬂ UJ kitos ¢
s O
= &

takk

d
talo
miig

modupe
dzieku

	EDB Slide Template and Graphic Elements
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	PowerPoint Presentation

