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Who am I

Name
Takashi HORIKAWA, Ph. D.

Research interests
Performance evaluation of computer & communication systems, including

performance engineering of IT systems
with slightly shifting the focus of the research to CPU scalability

Papers
Non-volatile Memory (NVM) Logging, PGCon 2016
Latch-free data structures for DBMS: design, implementation, and evaluation, 
SIGMOD ‘13
An Unexpected Scalability Bottleneck in a DBMS: A Hidden Pitfall in Implementing 
Mutual Exclusion, PDCS ‘11
An approach for scalability-bottleneck solution: identification and elimination of 
scalability bottlenecks in a DBMS, ICPE '11
A method for analysis and solution of scalability bottleneck in DBMS, SoICT '10
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https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Trend in computer architecture

• Single core performance is saturated

• Core count is increasing

We have to benefit 
from lots of CPU cores.

5

Parallelism



Utilization of Parallelism

• ‘Read’ and ‘write’ write have completely 
different aspects

6

Trx. Type ACID property
Granularity of

parallelism
Point of 
interest

Write
Careful control 

required
Transaction

Tuning the critical 
sections

Read (only)
No need to worry 

about ACID
Operator in plan 

tree
Parallel query

Focus here



Why is a critical section necessary?
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Critical section in small core systems

• Contention on the critical section is rare

– Every process can work most of the time

– Its Adverse effect is negligible
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Behavior in many-core servers

• ‘Stop the world operation’ becomes prominent

– Every process has a large lock wait time and can 
not do any useful work
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Amdahl’s Law

• Amdahl's Law is a law governing the speedup of 
using parallel processors on a problem, versus using 
only one serial processor.
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https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html

N
S = -----------------------

(B*N) + (1-B)
S : Speedup
N: Number of processors
B : % of algorithm that is serial

B =     0%  ->  S = N  (Ideal)
B = 100%  ->  S = 1  (No gain)

Reduction of B is indispensable



Quiz

• Which is better?

i.e. Higher throughput/Shorter response time
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Case 1

Case 2

Serial

Parallel

Processing time = 100mS
Serial processing = 5%

Processing time = 200mS
Serial processing = 1%
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There is no universal answer

The more the number of 
processors increase,
the more the effect of the 
serial execution larger. 

Even if the amount of 
overall processing increases, 
it is better to reduce the 
serial execution part.
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Degree of attention for LWLocks
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Name of LWLock Appearance count in 
www.postgresql.org

WALInsertLock 686

WALWriteLock 360

CLogControlLock 284

XidGenLock 168

ProcArrayLock 128

SerializableXactHashLock 82

ControlFileLock 80

SInvalReadLock 57

CheckpointLock 50

(WALBufMappingLock) (22)

As of 2017/5/5

Main topic 
in this talk
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CLOG (Commit LOG)
• To implement MVCC, visibility of a tuple is determined using

1. the t_xmin and t_xmax of the tuple,
2. the transaction status (for t_xmin and/or t_xmax), and 
3. the obtained transaction snapshot.

• Transaction status is maintained in CLOG which resides in 
$Data/pg_clog.
– This table contains two bits of status information for each transaction; 

the possible states are in-progress, committed, or aborted.
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Based on http://www.interdb.jp/pg/pgsql05.html

https://www.enterprisedb.com/well-known-databases-use-different-approaches-mvcc

http://www.interdb.jp/pg/pgsql05.html



CLOG in shared memory
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Transaction status (2bits)

.  .  .

8KBytes

TXIDm
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.   .   .

32KTXs

Shared memory

Array of CLOG buffers

TXIDm TXIDk TXIDyTXIDz TXIDx TXIDn

index

Array index and transaction ID are irrelevant

Logical str.

Physical str.

CLOG buffer

Store in the shared memory randomly



Points in CLOG buffer management

• Recently accessed CLOG Buffers are stored in the 
shared memory in random order

– Trade off between hit ratio and search overhead
Buffer replacement based on LRU

Linear search

• History of the number of CLOG buffers
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PG Version - 9.1 9.2 – 9.5 9.6

Count 8 32 128

(Value when shared buffer is sufficiently large)/*

* Number of shared CLOG buffers.

*

* On larger multi-processor systems, it is possible to have many CLOG page

* requests in flight at one time which could lead to disk access for CLOG

* page if the required page is not found in memory.  Testing revealed that we

* can get the best performance by having 128 CLOG buffers, more than that it

* doesn't improve performance.

<-- clog.c @ 9.6



CLogControlLock

• From PostgreSQL hackers’ mailing list

– In my investigation, I (Amit Kapila) found that the contention is mainly 
due to two reasons, 

– one is that while writing the transaction status in CLOG 
(TransactionIdSetPageStatus()), it acquires EXCLUSIVE 
CLogControlLock which contends with every other transaction 
which tries to access the CLOG for checking transaction status 
and to reduce it already a patch [1] is proposed by Simon; 

– Second contention is due to the reason that when the CLOG 
page is not found in CLOG buffers, it needs to acquire 
CLogControlLock in Exclusive mode which again contends with 
shared lockers which tries to access the transaction status.
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http://www.postgresql-archive.org/Speed-up-Clog-Access-by-increasing-CLOG-buffers-td5864147.html

*



Simple is best, if possible

• The reason why buffer replacement is necessary?
– CLOG buffer capacity is not enough.

128 buffers  --> 128 x 32K (= 4M) TRXs

• If memory is abundant
– Status for all transactions can be stored in the shared 

memory, enabling direct mapping of a TXID and 
corresponding status bits

--> No buffer replacement, no linear search
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TXID=0 TXID=Nmaxn-1 n n+1

Array of CLOG buffers
Memory location of status bits for each transaction 

is corresponds to its TXID

Starting point



Benefits of direct mapping

• Elimination of ‘CLOG page not found’ events
– CLogControlLock requests due to page-not-found 

events are also eliminated
– Buffer initialization occurs, which accompanies the 

progress of the transaction ID

• Decrease in the access time for the status bit
– resulting in the decrease in the CLogControlLock

holding time
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CLOG buffers Used Used Not used Not used Not used

TXID

Newly assigned TXID
This buffer page has to be initialized
when the first TXID is assigned



How many TXs?

• Factors related to this matter

– TXID is 32-bits length

--> Max. 4G TXs

– ‘autovacuum_freeze_max_age’ due to the XID 
wraparound problem

--> It does not exceed  2G TXs
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How much shared memory?

• Transaction status (2bit/TX)

• ‘group_lsn[]’

# of CLOG pages  X  CLOG_LSNS_PER_PAGE  X  

sizeof(XLogRecPtr)
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2G TX X
8
2

Byte/TX 0.5G Bytes=

See SimpleLruShmemSize() @ clog.c

0.5G Bytes=

Total 1G Bytes



Moore save the Amdahl
• Is 1G-Bytes of shared memory too much? 

23Linearly extend the trends shown in https://www.slideshare.net/Flashdomain/computer-architecture-part-5

20152010 2020

Yes

No
16GB

256GB

1GB



Implementation

• Changes in the source code
– Modified

src/backend/access/transam/clog.c ~40 lines
src/backend/access/transam/Makefile 1 line

– Added
src/backend/access/transam/nolru.c ~1.2K lines
src/include/access/nolru.h ~200 lines
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clog

xact

slru

transam . . .

nolru

Original Changed

Based on
slru.[c|h]

clog’

xact transam . . .

https://github.com/meistervonperf/postgresql-NoCLogLru



Experimental setup
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• Hardware
– DB server

CPU: E7-8890v4@2.20GHz x 4 (24 cores x 4 = 96 cores)
Memory: 1TB
FC Storage

RAID10: 15Krpm/600GB x 16 for data
RAID10: 15Krpm/600GB x 32 for WAL

– Client
CPU: E5-2699v3@2.3GHz x 2 (18 cores x 2)
Memory: 768GB

– Network
GB ether x 4

• Software, workload, etc.
– Benchmark : DBT-2
– DBMS : PostgreSQL 9.6.2
– OS : Linux 3.10.0 (CentOS 7.3)
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Performance evaluation

26

Logged tableUnlogged table

WAL overhead?

Benchmark : DBT-2



Consideration for small memory 

• Not all machines are equipped with large memory

• Current LRU mechanism is suitable for small memory 
machine  
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It is necessary to be able to choose proper clog mechanism from 
that using LRU replacement and that employing direct mapping

Clog’’

xact

slru

transam . . .

nolru

switch
config

Choose

(Not implemented yet)
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It’s too late

• An example : extension of a relation
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Worker process 1

heap_insert() RelationGetBufferForTuple()

LockRelationForExtension() UnlockRelationForExtension()

ReadBufferBI(…, P_NEW, …)

Lock for the relation extension is acquired

Worker process 2

Worker process 3

Worker process 4

Worker process n

Lock wait. .
 .

t



Prepare in advance
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Worker process 1

heap_insert() RelationGetBufferForTuple()

Worker process 2

Worker process 3

Worker process n

Bgworker

ReadBufferBI(…, P_NEW, …)

LockRelationForExtension()
UnlockRelationForExtension()

ThresholdRelation

. .
 .

t

Grow



Performance evaluation
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Unresolved issue

• Conflict with existing mechanism (vacuum)

– Vacuum tries to truncate a relation when there is free 
space in it, which is carried out by lazy_truncate_heap()

– ‘Prepare in advance’ strategy tries to make a certain 
amount of space at the end of the relation
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Conflict
Free space

End of the relation

Vacuum

Prepare in advance



Similar structure
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TransactionId

GetNewTransactionId()

{

. . .

LWLockAcquire(XidGenLock, LW_EXCLUSIVE);

. . .

/

* If we are allocating the first XID of a new page of the commit log,

* zero out that commit-log page before returning. We must do this while

* holding XidGenLock, else another xact could acquire and commit a later

* XID before we zero the page.  Fortunately, a page of the commit log

* holds 32K or more transactions, so we don't have to do this very often.

*

* Extend pg_subtrans and pg_commit_ts too.

*/

ExtendCLOG(xid);

ExtendCommitTs(xid);

ExtendSUBTRANS(xid);

. . .

LWLockRelease(XidGenLock);

. . .
}

As the TXID progresses page initialization is performed 
periodically with holding XidGenLock, which makes other 
processes that request a new TXID wait for the lock. 



Agenda

Introduction
Start with trend in computer architecture

Simple is best
CLogControlLock

Prepare in advance
Table extension

Achievements to date (Review)
Countermeasures for CPU scalability bottlenecks

Concluding remarks

34



A measurement of lock contention
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SpinLock for hash freeList

ProcArrayLock

CLogControlLock

LWLock mechanism

WALInsertLock

CLogControlLock

LockRelationOid()

Achievements to date
• 9.6

– Reduce contention for the ProcArrayLock (Amit Kapila, Robert Haas)

– Partition the shared hash table freelist to reduce contention on multi-CPU-socket 
servers (Aleksander Alekseev)

– Extend relations multiple blocks at a time when there is contention for the relation's 
extension lock (Dilip Kumar)

– Increase the number of clog buffers for better scalability (Amit Kapila, Andres Freund)

• 9.5
– Increase the number of buffer mapping partitions (Amit Kapila, Andres Freund, Robert 

Haas)

– Improve lock scalability (Andres Freund)

• 9.4 
– Allow multiple backends to insert into WAL buffers concurrently (Heikki Linnakangas)

• 9.2
– Allow uncontended locks to be managed using a new fast-path lock mechanism (Robert 

Haas)

– Make the number of CLOG buffers scale based on shared_buffers (Robert Haas, Simon 
Riggs, Tom Lane)
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LWLocks for BUFFER_MAPPING

LockRelationForExtension()



A report on the ProcArrayLock tuning

• It contributes to performance improvement in 
areas with a large number of clients
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Report of 2016 PGECons (PostgreSQL Enterprise Consortium) WG1 Activity, PGECons JAPAN,
https://pgecons-sec-tech.github.io/tech-report/html_wg1_2016/wg1_2016.html

(Workload : pgbench)
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Concluding remarks

• Exploiting parallelism becomes more and more important, 
due to spread use of many-core processors.
– The priority of countermeasures for bottlenecks should be 

determined with considering the performance impact.
– CLOG is a top priority target, as well as WAL insertion mechanism.

• It becomes feasible to place CLOG of all transactions in main 
memory.
– It contributes the decrease in the contention on CLogControlLock, 

resulting in CPU scalability improvement.

• ‘Prepare in advance’ strategy is a possible countermeasure 
for bottlenecks arising in extending a relation, CLOG, etc.
– It is necessary to adapt existing systems so that new mechanism 

can work effectively.
– It is also necessary to study about its effect further.
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Thank you for listening
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Any questions?
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