
Don’t Stop the World

2017.5.25

Takashi HORIKAWA

1

Who am I

Name
Takashi HORIKAWA, Ph. D.

Research interests
Performance evaluation of computer & communication systems, including

performance engineering of IT systems
with slightly shifting the focus of the research to CPU scalability

Papers
Non-volatile Memory (NVM) Logging, PGCon 2016
Latch-free data structures for DBMS: design, implementation, and evaluation,
SIGMOD ‘13
An Unexpected Scalability Bottleneck in a DBMS: A Hidden Pitfall in Implementing
Mutual Exclusion, PDCS ‘11
An approach for scalability-bottleneck solution: identification and elimination of
scalability bottlenecks in a DBMS, ICPE '11
A method for analysis and solution of scalability bottleneck in DBMS, SoICT '10

2

Agenda

Introduction
Start with trend in computer architecture

Simple is best
CLogControlLock

Prepare in advance
Table extension

Achievements to date (Review)
Countermeasures for CPU scalability bottlenecks

Concluding remarks

3

Agenda

Introduction
Start with trend in computer architecture

Simple is best
CLogControlLock

Prepare in advance
Table extension

Achievements to date (Review)
Countermeasures for CPU scalability bottlenecks

Concluding remarks

4

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Trend in computer architecture

• Single core performance is saturated

• Core count is increasing

We have to benefit
from lots of CPU cores.

5

Parallelism

Utilization of Parallelism

• ‘Read’ and ‘write’ write have completely
different aspects

6

Trx. Type ACID property
Granularity of

parallelism
Point of
interest

Write
Careful control

required
Transaction

Tuning the critical
sections

Read (only)
No need to worry

about ACID
Operator in plan

tree
Parallel query

Focus here

Why is a critical section necessary?

7

Process1 Process2 Process1 Process2

A

Variable a

A

A+1

A+1

A+2

A

Variable a

Lock
A

A+1

A+1

A+2

Unock

A
+
2

Lock(request)

Unock

OK in this sequence Always right

Lock(Acquire)

Process1 Process2

A

Variable a

A
+
1

A A

A+1

A+1

Wrong in this case

A
+
1

A
+
2

t t t

Without critical section Using critical section

A
+
1

Critical section in small core systems

• Contention on the critical section is rare

– Every process can work most of the time

– Its Adverse effect is negligible

8

Process 1

Process 2

Critical section (Bottleneck)

t

Non-critical section

Waiting for the lock

Lock handover

Behavior in many-core servers

• ‘Stop the world operation’ becomes prominent

– Every process has a large lock wait time and can
not do any useful work

9

Process 1
Process 2
Process 3
Process 4
Process 5
Process 6
Process 7
Process 8

Critical section (Bottleneck)

t

Non-critical section

Waiting for the lock

Lock handover

Amdahl’s Law

• Amdahl's Law is a law governing the speedup of
using parallel processors on a problem, versus using
only one serial processor.

10

https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html

N
S = -----------------------

(B*N) + (1-B)
S : Speedup
N: Number of processors
B : % of algorithm that is serial

B = 0% -> S = N (Ideal)
B = 100% -> S = 1 (No gain)

Reduction of B is indispensable

Quiz

• Which is better?

i.e. Higher throughput/Shorter response time

11

Case 1

Case 2

Serial

Parallel

Processing time = 100mS
Serial processing = 5%

Processing time = 200mS
Serial processing = 1%

0 20 40 60
0

50

100

150

200

of Cores

T
h
ro

u
g
h
p
u
t

There is no universal answer

The more the number of
processors increase,
the more the effect of the
serial execution larger.

Even if the amount of
overall processing increases,
it is better to reduce the
serial execution part.

12

Degree of attention for LWLocks

13

Name of LWLock Appearance count in
www.postgresql.org

WALInsertLock 686

WALWriteLock 360

CLogControlLock 284

XidGenLock 168

ProcArrayLock 128

SerializableXactHashLock 82

ControlFileLock 80

SInvalReadLock 57

CheckpointLock 50

(WALBufMappingLock) (22)

As of 2017/5/5

Main topic
in this talk

Agenda

Introduction
Start with trend in computer architecture

Simple is best
CLogControlLock

Prepare in advance
Table extension

Achievements to date (Review)
Countermeasures for CPU scalability bottlenecks

Concluding remarks

14

CLOG (Commit LOG)
• To implement MVCC, visibility of a tuple is determined using

1. the t_xmin and t_xmax of the tuple,
2. the transaction status (for t_xmin and/or t_xmax), and
3. the obtained transaction snapshot.

• Transaction status is maintained in CLOG which resides in
$Data/pg_clog.
– This table contains two bits of status information for each transaction;

the possible states are in-progress, committed, or aborted.

15

Based on http://www.interdb.jp/pg/pgsql05.html

https://www.enterprisedb.com/well-known-databases-use-different-approaches-mvcc

http://www.interdb.jp/pg/pgsql05.html

CLOG in shared memory

16

Transaction status (2bits)

. . .

8KBytes

TXIDm

TXIDn TXIDz

. . .

32KTXs

Shared memory

Array of CLOG buffers

TXIDm TXIDk TXIDyTXIDz TXIDx TXIDn

index

Array index and transaction ID are irrelevant

Logical str.

Physical str.

CLOG buffer

Store in the shared memory randomly

Points in CLOG buffer management

• Recently accessed CLOG Buffers are stored in the
shared memory in random order

– Trade off between hit ratio and search overhead
Buffer replacement based on LRU

Linear search

• History of the number of CLOG buffers

17

PG Version - 9.1 9.2 – 9.5 9.6

Count 8 32 128

(Value when shared buffer is sufficiently large)/*

* Number of shared CLOG buffers.

*

* On larger multi-processor systems, it is possible to have many CLOG page

* requests in flight at one time which could lead to disk access for CLOG

* page if the required page is not found in memory. Testing revealed that we

* can get the best performance by having 128 CLOG buffers, more than that it

* doesn't improve performance.

<-- clog.c @ 9.6

CLogControlLock

• From PostgreSQL hackers’ mailing list

– In my investigation, I (Amit Kapila) found that the contention is mainly
due to two reasons,

– one is that while writing the transaction status in CLOG
(TransactionIdSetPageStatus()), it acquires EXCLUSIVE
CLogControlLock which contends with every other transaction
which tries to access the CLOG for checking transaction status
and to reduce it already a patch [1] is proposed by Simon;

– Second contention is due to the reason that when the CLOG
page is not found in CLOG buffers, it needs to acquire
CLogControlLock in Exclusive mode which again contends with
shared lockers which tries to access the transaction status.

18

http://www.postgresql-archive.org/Speed-up-Clog-Access-by-increasing-CLOG-buffers-td5864147.html

*

Simple is best, if possible

• The reason why buffer replacement is necessary?
– CLOG buffer capacity is not enough.

128 buffers --> 128 x 32K (= 4M) TRXs

• If memory is abundant
– Status for all transactions can be stored in the shared

memory, enabling direct mapping of a TXID and
corresponding status bits

--> No buffer replacement, no linear search

19

TXID=0 TXID=Nmaxn-1 n n+1

Array of CLOG buffers
Memory location of status bits for each transaction

is corresponds to its TXID

Starting point

Benefits of direct mapping

• Elimination of ‘CLOG page not found’ events
– CLogControlLock requests due to page-not-found

events are also eliminated
– Buffer initialization occurs, which accompanies the

progress of the transaction ID

• Decrease in the access time for the status bit
– resulting in the decrease in the CLogControlLock

holding time

20

CLOG buffers Used Used Not used Not used Not used

TXID

Newly assigned TXID
This buffer page has to be initialized
when the first TXID is assigned

How many TXs?

• Factors related to this matter

– TXID is 32-bits length

--> Max. 4G TXs

– ‘autovacuum_freeze_max_age’ due to the XID
wraparound problem

--> It does not exceed 2G TXs

21

How much shared memory?

• Transaction status (2bit/TX)

• ‘group_lsn[]’

of CLOG pages X CLOG_LSNS_PER_PAGE X

sizeof(XLogRecPtr)

22

2G TX X
8
2

Byte/TX 0.5G Bytes=

See SimpleLruShmemSize() @ clog.c

0.5G Bytes=

Total 1G Bytes

Moore save the Amdahl
• Is 1G-Bytes of shared memory too much?

23Linearly extend the trends shown in https://www.slideshare.net/Flashdomain/computer-architecture-part-5

20152010 2020

Yes

No
16GB

256GB

1GB

Implementation

• Changes in the source code
– Modified

src/backend/access/transam/clog.c ~40 lines
src/backend/access/transam/Makefile 1 line

– Added
src/backend/access/transam/nolru.c ~1.2K lines
src/include/access/nolru.h ~200 lines

24

clog

xact

slru

transam . . .

nolru

Original Changed

Based on
slru.[c|h]

clog’

xact transam . . .

https://github.com/meistervonperf/postgresql-NoCLogLru

Experimental setup

25

• Hardware
– DB server

CPU: E7-8890v4@2.20GHz x 4 (24 cores x 4 = 96 cores)
Memory: 1TB
FC Storage

RAID10: 15Krpm/600GB x 16 for data
RAID10: 15Krpm/600GB x 32 for WAL

– Client
CPU: E5-2699v3@2.3GHz x 2 (18 cores x 2)
Memory: 768GB

– Network
GB ether x 4

• Software, workload, etc.
– Benchmark : DBT-2
– DBMS : PostgreSQL 9.6.2
– OS : Linux 3.10.0 (CentOS 7.3)

0 50 100
0

1000000

2000000

of Connections

T
h

ro
u

g
h

p
u

t
(N

O
T

P
M

)

9.6.2

9.
6.

2
+

C
LO

G

0 50 100
0

1000000

2000000

of Connections

T
h

ro
u

g
h

p
u

t
(N

O
T

P
M

)

9.6.2

9.
6.

2
+

C
LO

G

Performance evaluation

26

Logged tableUnlogged table

WAL overhead?

Benchmark : DBT-2

Consideration for small memory

• Not all machines are equipped with large memory

• Current LRU mechanism is suitable for small memory
machine

27

It is necessary to be able to choose proper clog mechanism from
that using LRU replacement and that employing direct mapping

Clog’’

xact

slru

transam . . .

nolru

switch
config

Choose

(Not implemented yet)

Agenda

Introduction
Start with trend in computer architecture

Simple is best
CLogControlLock

Prepare in advance
Table extension

Achievements to date (Review)
Countermeasures for CPU scalability bottlenecks

Concluding remarks

28

It’s too late

• An example : extension of a relation

29

Worker process 1

heap_insert() RelationGetBufferForTuple()

LockRelationForExtension() UnlockRelationForExtension()

ReadBufferBI(…, P_NEW, …)

Lock for the relation extension is acquired

Worker process 2

Worker process 3

Worker process 4

Worker process n

Lock wait. .
 .

t

Prepare in advance

30

Worker process 1

heap_insert() RelationGetBufferForTuple()

Worker process 2

Worker process 3

Worker process n

Bgworker

ReadBufferBI(…, P_NEW, …)

LockRelationForExtension()
UnlockRelationForExtension()

ThresholdRelation

. .
 .

t

Grow

Performance evaluation

31

0 50 100

1000000

1500000

of Connections

T
h

ro
u
g

h
p
u

t
(N

O
T

P
M

)

9.6.2
9
.6

.2
 +

 C
L
O

G

9.6.2 + CLOG + extend

Benchmark : DBT-2
Using logged table

Unresolved issue

• Conflict with existing mechanism (vacuum)

– Vacuum tries to truncate a relation when there is free
space in it, which is carried out by lazy_truncate_heap()

– ‘Prepare in advance’ strategy tries to make a certain
amount of space at the end of the relation

32

Conflict
Free space

End of the relation

Vacuum

Prepare in advance

Similar structure

33

TransactionId

GetNewTransactionId()

{

. . .

LWLockAcquire(XidGenLock, LW_EXCLUSIVE);

. . .

/

* If we are allocating the first XID of a new page of the commit log,

* zero out that commit-log page before returning. We must do this while

* holding XidGenLock, else another xact could acquire and commit a later

* XID before we zero the page. Fortunately, a page of the commit log

* holds 32K or more transactions, so we don't have to do this very often.

*

* Extend pg_subtrans and pg_commit_ts too.

*/

ExtendCLOG(xid);

ExtendCommitTs(xid);

ExtendSUBTRANS(xid);

. . .

LWLockRelease(XidGenLock);

. . .
}

As the TXID progresses page initialization is performed
periodically with holding XidGenLock, which makes other
processes that request a new TXID wait for the lock.

Agenda

Introduction
Start with trend in computer architecture

Simple is best
CLogControlLock

Prepare in advance
Table extension

Achievements to date (Review)
Countermeasures for CPU scalability bottlenecks

Concluding remarks

34

A measurement of lock contention

35

of CPU cores

O
cc

u
rr

en
ce

 c
o

u
n

t
o

f
lw

lo
ck

co
n

te
n

ti
o

n
 (

p
er

 T
X

)

Report of 2014 PGECons (PostgreSQL Enterprise Consortium) WG1 Activity, PGECons JAPAN,
https://www.pgecons.org/downloads/89

◎

〇
〇

〇

△

(This is not due to resource contention)

SpinLock for hash freeList

ProcArrayLock

CLogControlLock

LWLock mechanism

WALInsertLock

CLogControlLock

LockRelationOid()

Achievements to date
• 9.6

– Reduce contention for the ProcArrayLock (Amit Kapila, Robert Haas)

– Partition the shared hash table freelist to reduce contention on multi-CPU-socket
servers (Aleksander Alekseev)

– Extend relations multiple blocks at a time when there is contention for the relation's
extension lock (Dilip Kumar)

– Increase the number of clog buffers for better scalability (Amit Kapila, Andres Freund)

• 9.5
– Increase the number of buffer mapping partitions (Amit Kapila, Andres Freund, Robert

Haas)

– Improve lock scalability (Andres Freund)

• 9.4
– Allow multiple backends to insert into WAL buffers concurrently (Heikki Linnakangas)

• 9.2
– Allow uncontended locks to be managed using a new fast-path lock mechanism (Robert

Haas)

– Make the number of CLOG buffers scale based on shared_buffers (Robert Haas, Simon
Riggs, Tom Lane)

36

LWLocks for BUFFER_MAPPING

LockRelationForExtension()

A report on the ProcArrayLock tuning

• It contributes to performance improvement in
areas with a large number of clients

37

Report of 2016 PGECons (PostgreSQL Enterprise Consortium) WG1 Activity, PGECons JAPAN,
https://pgecons-sec-tech.github.io/tech-report/html_wg1_2016/wg1_2016.html

(Workload : pgbench)

Agenda

Introduction
Start with trend in computer architecture

Simple is best
CLogControlLock

Prepare in advance
Table extension

Achievements to date (Review)
Countermeasures for CPU scalability bottlenecks

Concluding remarks

38

Concluding remarks

• Exploiting parallelism becomes more and more important,
due to spread use of many-core processors.
– The priority of countermeasures for bottlenecks should be

determined with considering the performance impact.
– CLOG is a top priority target, as well as WAL insertion mechanism.

• It becomes feasible to place CLOG of all transactions in main
memory.
– It contributes the decrease in the contention on CLogControlLock,

resulting in CPU scalability improvement.

• ‘Prepare in advance’ strategy is a possible countermeasure
for bottlenecks arising in extending a relation, CLOG, etc.
– It is necessary to adapt existing systems so that new mechanism

can work effectively.
– It is also necessary to study about its effect further.

39

Thank you for listening

40

Any questions?

41

